Zahmheits-Satz

mathematischer Satz
(Weitergeleitet von Zahmheits-Vermutung)

In der Mathematik ist die Zahmheits-Vermutung eine auf Albert Marden zurückgehende Vermutung aus der Theorie der Kleinschen Gruppen in der 3-dimensionalen Topologie, die 2004 von Ian Agol, Danny Calegari und David Gabai bewiesen wurde.

Jede vollständige, 3-dimensionale hyperbolische Mannigfaltigkeit mit endlich erzeugter Fundamentalgruppe ist topologisch zahm, das heißt ist homöomorph zum Inneren einer kompakten Mannigfaltigkeit.

Enden hyperbolischer 3-Mannigfaltigkeiten

Bearbeiten

Aus der topologischen Zahmheit folgt unmittelbar, dass sich jede orientierbare vollständige 3-dimensionale hyperbolische Mannigfaltigkeit   mit endlich erzeugter Fundamentalgruppe zerlegen lässt in einen kompakten Kern   (welcher homöomorph zu   ist) und endlich viele zusammenhängende „Enden“, welche von der Form   sind. Dabei sind die Flächen   homöomorph zu den Zusammenhangskomponenten von  .

Rolle der Hyperbolizität

Bearbeiten

Die Annahme, dass   hyperbolisch ist, spielt eine wesentliche Rolle im Beweis der Zahmheits-Vermutung. Es gibt Gegenbeispiele von (nicht-hyperbolischen) 3-Mannigfaltigkeiten mit endlich erzeugter Fundamentalgruppe, deren Enden nicht zahm sind.

Literatur

Bearbeiten