Ersatzschaltungen des Bipolartransistors

(Weitergeleitet von Ebers-Moll-Modell)

Um das Verhalten eines Bipolartransistors oder Feldeffekttransistors auch in komplexen Schaltungen berechnen zu können, benötigt man ein vereinfachtes, abstraktes Modell. Es gibt verschiedene Stufen der Abstraktion. Meist werden zur Dimensionierung einfache Modelle verwendet, für die Schaltungssimulation komplexere Modelle bzw. deren Ersatzschaltbild.

Theoretisch wäre auch eine exakte Berechnung des physikalischen Verhaltens, beispielsweise über eine Monte-Carlo-Simulation möglich, aber schon in relativ einfachen elektrischen Netzwerken übersteigt der Rechenaufwand einer solchen Simulation die Leistung heutiger Computer. Die Modelle dienen daher zur Vereinfachung und hinreichenden Nachbildung der realen Abläufe, um so den Rechenaufwand drastisch zu reduzieren.

Eine weitere Vereinfachung kann durch die Nutzung unterschiedlicher Modelle für den statischen und den dynamischen Betrieb erreicht werden. Erstere dienen zur gleichstrommäßigen Dimensionierung, und damit vor allem zur Berechnung der korrekten Arbeitspunkteinstellung, sowie für niederfrequente Logikschaltungen (z. B. TTL). Modelle für den dynamischen Betrieb dienen der wechselstrommäßigen Dimensionierung und damit zur Berechnung von Schaltungen für die Signalübertragung und Signalverarbeitung.

Der vorliegende Artikel beschäftigt sich ausschließlich mit der Modellierung des Bipolartransistors, für Informationen über den Aufbau und die Verwendung von Bipolartransistoren wird auf den Hauptartikel verwiesen.

Formelzeichen

Bearbeiten

Im Folgenden werden die hier verwendeten Formelzeichen aufgelistet. Für weitere Formelzeichen siehe auch die mathematische Beschreibung.

Zeichen Beschreibung
  Idealer Basisstrom der Emitter-Diode
  Idealer Basisstrom der Kollektor-Diode
  Basis-Leckstrom der Emitter-Diode
  Basis-Leckstrom der Kollektor-Diode
  Kollektor-Emitter-Transportstrom
  Strom der Substrat-Diode

  Basiswiderstand
  Kollektorbahnwiderstand
  Emitterwiderstand

  Sperrschichtkapazität der Emitter-Diode
  Interne Sperrschichtkapazität der Kollektor-Diode
  Externe Sperrschichtkapazität der Kollektor-Diode
  Sperrschichtkapazität der Substrat-Diode
  Diffusionskapazität der Emitter-Diode
  Diffusionskapazität der Kollektor-Diode

Formelzeichen für das statische und dynamische Verhalten

Bearbeiten
Formelzeichen für das statische Verhalten
Zeichen Beschreibung
  Sättigungssperrstrom
  Sättigungssperrstrom der Substrat-Diode
  Ideale Stromverstärkung im Normalbetrieb
  Ideale Stromverstärkung im Inversbetrieb

  Leck-Sättigungssperrstrom der Emitter-Diode
  Leck-Sättigungssperrstrom der Kollektor-Diode
  Emissionskoeffizient der Emitter-Diode
  Emissionskoeffizient der Kollektor-Diode

  Kniestrom zur starken Injektion im Normalbetrieb
  Kniestrom zur starken Injektion im Inversbetrieb

  Temperaturspannung (ca. 26 mV bei Raumtemperatur)

  Early-Spannung im Normalbetrieb
  Early-Spannung im Inversbetrieb

  Externer Bahnwiderstand
  Interner Bahnwiderstand1)
1) wird in PSpice aus der Gleichung   berechnet.
Formelzeichen für das dynamische Verhalten
Zeichen Beschreibung
  Null-Kapazität der Emitter-Diode
  Null-Kapazität der Kollektor-Diode
  Null-Kapazität der Substrat-Diode
  Diffusionsspannung der Emitter-Diode
  Diffusionsspannung der Kollektor-Diode
  Diffusionsspannung der Substrat-Diode
  Kapazitätskoeffizient der Emitter-Diode
  Kapazitätskoeffizient der Kollektor-Diode
  Kapazitätskoeffizient der Substrat-Diode

  Aufteilungskoeffizient der Kapazität in der Kollektor-Diode
  Koeffizient für den Kapazitätsverlauf

  Ideale Transitzeit im Normalbetrieb
  Ideale Transitzeit im Inversbetrieb
  Transitzeitkoeffizient im Normalbetrieb
  Transitzeitkoeffizient im Inversbetrieb
  Transitzeitspannung im Normalbetrieb
  Transitzeitspannung im Inversbetrieb
  Transitzeitstrom im Normalbetrieb
  Transitzeitstrom im Inversbetrieb

Weitere Formelzeichen

Bearbeiten
Formelzeichen für das thermische Verhalten
Zeichen Beschreibung
  Temperaturkoeffizient der Sperrströme
  Temperaturkoeffizient der Stromverstärkung

Englische Bezeichnung

Bearbeiten

Da Datenblätter meist in Englisch verfasst sind, muss man auch die verwendeten Formelzeichen übersetzen können. Im Wesentlichen sind dies:

Deutsch Englisch
Bezeichnung Zeichen Bezeichnung Zeichen
Spannung U voltage V
Normalbetrieb N forward region F
Inversbetrieb I reverse region R
Sperrschicht S junction J

Die anderen Bezeichnungen können beibehalten werden.

Modelle für das statische Verhalten

Bearbeiten

Ebers-Moll-Modell

Bearbeiten
 
Ebers-Moll-Modell eines npn-Transistors

Das Ebers-Moll-Modell (nach John Lewis Moll und Jewell James Ebers, 1954) ist das einfachste Modell für den Bipolartransistor. Es hat nur drei Parameter und beschreibt damit die wichtigsten Effekte. Das Ebers-Moll-Modell wird mit Hilfe eines Dioden-Ersatzschaltbildes dargestellt.

Ein npn-Transistor besteht aus zwei antiseriellen pn-Übergängen (Dioden) mit gemeinsamer p-Zone. Diese Übergänge werden als Emitter-Diode (Basis-Emitter-Diode; BE-Diode) und Kollektor-Diode (Basis-Kollektor-Diode; BC-Diode) bezeichnet. Durch die dünne Basis (p-Zone) im Bipolartransistor fließt der Großteil des Stromes über den Emitter ab. Daher besteht das Ebers-Moll-Modell zusätzlich zu den beiden Dioden aus zwei gesteuerten Stromquellen, die den Stromfluss durch die Basis beschreiben. Die Stromquellen verhalten sich genauer gesagt als Stromsenken. Damit sich   ausbilden kann, ist der Transistor in einem geeigneten Stromkreis zu betreiben, den eine tatsächlich existierende Energiequelle speist. Für den pnp-Transistor werden die Vorzeichen einfach umgedreht.

Zusätzlich wird noch ein Steuerfaktor für den Normalbetrieb   sowie den Inversbetrieb   verwendet, um den unsymmetrischen Aufbau eines realen npn-Transistors zu berücksichtigen.

 
 
 
 
 

Im Normalbetrieb sperrt die BC-Diode da   und kann deshalb vernachlässigt werden. Zusätzlich kann die zugehörige Exponentialfunktion durch −1 ersetzt werden, da   ist. Umgekehrt sperrt im Inversbetrieb die BE-Diode, wodurch man auch in diesem Fall eine Vereinfachung der Gleichung auf dieselbe Weise erhält.

Reduzierte Ebers-Moll-Modelle für den npn-Transistor
Normalbetrieb Inversbetrieb
   

 
 
 

mit

 
 

 
 
 

mit

 
 

Ebers-Moll-Modell im Sättigungsbetrieb

Bearbeiten

Wenn man den Bipolartransistor als Schalter einsetzt, kommt dieser vom Normalbetrieb in den Sättigungsbetrieb. Hier ist vor allem die minimal erreichbare Kollektor-Emitter-Spannung   interessant. Aufgelöst für diese Spannung erhält man die Gleichung

 

Bei   gilt  . Das Minimum erhält man bei  :

 

Für den Inversbetrieb vertauscht man Emitter und Kollektor. Dadurch erhält man für die Sättigung mit  :

 

Da   gilt  . Dabei gilt üblicherweise   und  .

Transportmodell

Bearbeiten
 
Transportmodell eines npn-Transistors

Durch die Umformung der beiden Stromquellen des Ebers-Moll-Modells in eine einzige gesteuerte Stromquelle erhält man das Transportmodell des Bipolartransistors. Das Transportmodell beschreibt das Gleichstromverhalten. Emitter- und Kollektor-Diode werden dabei als ideal angenommen und der durch die Basis fließende Strom wird als Transportstrom   getrennt berechnet. Für das Transportmodell gelten die folgenden Gleichungen:

 
 
 
 
 
 
 
Vereinfachtes Transportmodell für den Normalbetrieb eines npn-Transistors

Da für den Normalbetrieb die Sperrströme vernachlässigt werden können, erhält man das reduzierte Transportmodell mit:

 
 
 

Modellierung statischer Effekte im Transportmodell

Bearbeiten
 
Erweitertes Transportmodell eines npn-Transistors

Um das statische Verhalten des Bipolartransistors besser modellieren zu können, muss das Transportmodell entsprechend erweitert werden. Dabei sind vor allem die folgenden Effekte zu berücksichtigen:

Für das um diese Effekte erweiterte Transportmodell gelten im Allgemeinen die Zusammenhänge:

 
 
 

was sich aus den im Weiteren erläuterten Formeln ergibt.

Leckströme
Bearbeiten

Die Leckströme, die durch die Ladungsträgerrekombination in den pn-Übergängen erzeugt werden, werden zu den jeweiligen Strömen der Kollektor- und der Emitter-Diode hinzuaddiert. Das wird erreicht, indem man den Dioden im Transportmodell jeweils eine weitere Diode parallelschaltet. Diese zusätzlichen Dioden werden über die Leck-Sättigungs-Sperrströme   und  , sowie über die Emissionskoeffizienten   und   beschrieben.

 
 
Hochstrom- und Early-Effekt
Bearbeiten

Wenn der Strom durch den Transistor sehr stark ist, ist der Transportstrom eines realen Transistors durch die hohe Ladungsträgerkonzentration in der Basis kleiner als durch das Grundmodell dargestellt. Dieser Effekt wird auch als Hochstromeffekt bzw. als starke Injektion bezeichnet.

Zusätzlich beeinflussen die Spannungen   und   die effektive Dicke der Basiszone und wirken sich somit auf den Transportstrom   aus. Dieser Effekt ist als Early-Effekt bekannt.

Der Hochstrom- und der Early-Effekt wird durch die Größe der Dimension Zahl   dargestellt.

 

  ist dabei die relative Majoritätsträgerladung und setzt sich aus der Größe des Early-Effekts   und der Größe des Hochstromeffektes   zusammen:

 
 
 

  und   sind die Early-Spannungen mit  .   und   sind die Knieströme der starken Injektion. Die Größe der Knieströme ist von der Größe und damit der Bauform des Transistors abhängig und liegen im Milliampere- (Kleinleistungtransitor) bis Amperebereich (Leistungstransistor).

Hochstrom- und Early-Effekt im Normalbetrieb
Bearbeiten
 
Gummel-Plot mit UCE = konst.

Bei der Betrachtung des Kollektorstromes kommt die Auswirkung des Faktors   besonders zur Geltung. Unter Vernachlässigung der Sperrströme erhält man:

 

Bei kleinen bis mittleren Stromgrößen   gilt   und somit  . Zusätzlich gilt

 

da  . Somit erhält man eine Näherungsgleichung für den Early-Effekt:

 

und durch Einsetzen in   erhält man:

 

Bei großen Strömen   ist   und somit  . Durch Einsetzen erhält man:

 

Unter Vernachlässigung der Sperrströme erhält man für   die Gleichung

 
Stromverstärkung
Bearbeiten

Für die Stromverstärkung B gilt der Zusammenhang

 

Zudem ist die Stromverstärkung B von UBE und UCE abhängig, da auch IC und qB von diesen Spannungen abhängig sind.

Der Verlauf der Stromverstärkung wird zur Näherung in drei Abschnitte unterteilt:

1. Leckstrombereich
Bei kleinen Kollektorströmen dominiert der Leckstromanteil IB,E im Basisstrom IB. Dieser Bereich wird folglich als Leckstrombereich bezeichnet. In diesem Bereich gilt aufgrund der Dominanz des Leckstromes die Näherung   und  . Daraus ergibt sich die Vereinfachung:
 
Mit   erhält man  . Damit ist die Verstärkung B in diesem Bereich kleiner als bei mittelgroßen Kollektorströmen und wird mit steigendem Kollektorstrom   ebenfalls größer.
2. Normalbereich
Bei mittleren Kollektorströmen gilt die Näherung   und daraus folgend:
 
Daraus ergibt sich ein maximaler Wert, sowie nur eine geringe Abhängigkeit von  , für die Verstärkung B in diesem Bereich. Deshalb werden Transistoren bevorzugt in diesem Bereich betrieben.
3. Hochstrombereich
Bei großen Kollektorströmen kommt es zum Hochstromeffekt. Über den Zusammenhang   erhält man den Zusammenhang:
 
Die Stromverstärkung B ist somit indirekt proportional zu IC, was bedeutet, dass die Stromverstärkung mit steigendem Kollektorstrom stark abnimmt.
 
Abhängigkeit der Verstärkung B vom Kollektorstrom IC in doppellogarithmischer Darstellung bei konstanter Kollektor-Emitter-Spannung UCE

Die maximale Stromverstärkung bei konstanter Kollektor-Emitter-Spannung wird mit Bmax(UCE) bezeichnet. Für Transistoren mit großem Kniestrom IK,N und kleinem Leckstrom IS,E ist der Normalbereich so breit, dass der tatsächliche Verlauf von B mit der Näherungsgeraden in diesem Bereich eine Tangente bildet. Im Schnittpunkt gilt Bmax(UCE) = B0,max = BN, wobei B0,max bei UCE = 0 auftritt. Bei Transistoren mit kleinem Kniestrom und großem Leckstrom hingegen fällt der Normalbereich sehr schmal aus, wobei die Verstärkung unterhalb der Näherungsgeraden bleibt und damit B < BN gilt.

Bahnwiderstände
Bearbeiten
 
Um Bahnwiderstände erweitertes Transportmodell
 
Lage der Bahnwiderstände im Halbleiter des Bipolartransistors

Da das Halbleitermaterial für den elektrischen Strom einen Widerstand darstellt, muss dieser Widerstand in Form der Bahnwiderstände dargestellt werden. Man unterscheidet zwischen dem Emitterbahnwiderstand RE, dem Kollektorbahnwiderstand RC und dem Basisbahnwiderstand RB.

Emitterbahnwiderstand
Aufgrund der starken Dotierung und des geringen Längen-zu-Querschnitt-Verhältnisses des Emitters hat RE nur einen kleinen Betrag. Bei Kleinleistungstransistoren beträgt RE etwa 0,1 Ω bis 1 Ω und bei Leistungstransistoren etwa 0,01 Ω bis 0,1 Ω.
Kollektorbahnwiderstand
Der Kollektorbahnwiderstand wird vor allem durch die schwach dotierte Kollektorzone verursacht. Bei Kleinleistungstransistoren beträgt RC etwa 1 Ω bis 10 Ω und bei Leistungstransistoren etwa 0,1 Ω bis 1 Ω.
Basiswiderstand
Der Basiswiderstand wird aus dem externen Basiswiderstand RBe und dem internen Basiswiderstand RBi gebildet. Der externe Basiswiderstand tritt zwischen dem Kontakt der Basis und der aktiven Basiszone auf, während der interne Basiswiderstand quer in der aktiven Basiszone zwischen Emitter und Kollektor auftritt. Bei großen Strömen hat der interne Basiswiderstand nur begrenzt Einfluss, da sich der Strom aufgrund der Stromverdrängung an der Basiszone konzentriert. Zusätzlich wirkt der Early-Effekt, der die Dicke der Basiszone beeinflusst. Diese Effekte werden in der Konstante qB zusammengefasst.
Der Basiswiderstand ergibt sich folglich aus:
 
Für den Normalbetrieb folgt durch Auflösen von qB:
 
Bei Kleinleistungstransistoren beträgt RBe etwa 10 Ω bis 100 Ω und bei Leistungstransistoren etwa 1 Ω bis 10 Ω. RBi ist etwa drei- bis viermal so groß wie RBe.
Substrat-Diode
Bearbeiten
 
Lateraler integrierter pnp-Transistor
 
Vertikaler integrierter npn-Transistor

Bei integrierten Transistoren ist bei vertikalen npn-Transistoren zwischen Substrat und Kollektor, sowie bei lateralen pnp-Transistoren zwischen Substrat und Basis, konstruktionsbedingt—wie in den nebenstehenden Abbildungen dargestellt—ein pn-Übergang, die sog. Substrat-Diode. Diese Substrat-Diode wird als herkömmliche pn-Diode über die Shockley-Formel beschrieben. Für den Sättigungssperrstrom IS wird der Sättigungssperrstrom der Substratdiode IS,S eingesetzt:

  (lateral)
  (vertikal)

Da die Substrat-Diode üblicherweise nicht beschaltet wird, ist keine Modellierung erforderlich. Bei (fehlerhafter) Beschaltung kann jedoch ein Strom fließen und muss in diesem Fall auch berücksichtigt werden.

Modellierung dynamischer Effekte im Transportmodell

Bearbeiten

Bei der Ansteuerung mit sinus- oder pulsförmigen Signalen muss auch das dynamische Verhalten des Transistors beachtet werden. Dafür benötigt man, wie bei der Diode, die im Transistor auftretenden Sperr- und Diffusionskapazitäten.

Sperrschichtkapazitäten
Bearbeiten

Bei einem einzelnen Bipolartransistor treten zwei und bei integrierten Transistoren drei Sperrschichtkapazitäten auf. Die Emitterdiode ist durch die Emittersperrschichtkapazität   charakterisiert. Die Kollektordiode wird durch die Kollektorsperrschichtkapazität   beschrieben, welche sich aus der internen Sperrschichtkapazität   der aktiven Zone bei   und der externen Sperrschichtkapazität   beim Basisanschluss   zusammen. Die Anteile der internen und externen Sperrschichtkapazität an der Kollektorsperrschichtkapazität wird durch den Parameter   dargestellt:

 

Bei Einzeltransistoren liegt der Faktor   meistens zwischen 0,5 und 1, was bedeutet, dass   ist. Bei integrierten Transistoren ist   und damit  .

Bei integrierten Transistoren tritt zusätzlich die Sperrschichtkapazität der Substratdiode   auf. Diese wirkt bei integrierten vertikalen npn-Transistoren am internen Kollektor   und bei integrierten lateralen npn-Transistoren an der internen Basis  . Daher gilt:

 
Diffusionskapazitäten
Bearbeiten

Beim Transistor treten zwei Diffusionskapazitäten auf: die Diffusionskapazität der Emitterdiode   und die Diffusionskapazität der Kollektordiode  . In diesen werden die Emitterdiffusionsladung   und die Kollektordiffusionsladung   gespeichert. Die Diffusionsladungen ergeben sich aus dem Transportstrom  , welcher vom Kollektor zum Emitter fließt (siehe auch Transportmodell).

 
 

Wobei die Zeitkonstanten   und   als Transit-Zeit bezeichnet werden. Durch Differentiation ergeben sich aus diesen Gleichungen die Diffusionskapazitäten:

 
 

Die Diffusionskapazitäten   und   treten parallel zu den Sperrschichtkapazitäten   und   auf. Im Normalbetrieb ist die Kollektor-Diffusionskapazität   aufgrund der geringen inneren Basis-Kollektor-Spannung   im Vergleich zur inneren Kollektor-Sperrschicht-Kapazität   sehr klein und kann daher vernachlässigt werden.   kann infolge der Vernachlässigung von   mit einer konstanten Transitzeit beschrieben werden, wodurch   angenommen wird.

Wenn der Transitstrom klein ist gilt  , bei großem Transitstrom hingegen gilt  . Um das korrekt darstellen zu können, muss   in der Ersatzschaltung genau modelliert werden. Eine Zunahme von   gei großen Strömen wirkt sich als Abnahme der Grenzfrequenzen und der Schaltgeschwindigkeit des Transistors aus.

Aufgrund des Hochstromeffektes nimmt die Diffusionsladung überproportional zu. Die Transitzeit ist daher nicht konstant und nimmt mit steigendem Strom zu. Der Early-Effekt wirkt sich ebenfalls aus, da dieser die effektive Dicke der der Basiszone und damit die in der Basiszone gespeicherte Ladung verändert. Da jedoch mit den Parametern   und   keine präzise Beschreibung möglich ist, wird eine empirisch bestimmte Gleichung zur Beschreibung verwendet:

 
Verlauf von   in doppellogarithmischer Darstellung
 

wobei der Faktor x für das Polynom über die folgende Gleichung definiert ist:

 

Zusätzlich ist   die ideale Transitzeit,   der Koeffizient der Transitzeit,   der Transitzeit-Kniestrom und   die Transitzeit-Spannung. Der Koeffizient der Transitzeit   gibt an, wie stark   bei   zunehmen kann:

 

Die Hälfte der maximalen Zunahme erhält man bei  :

 

Daraus folgt, dass wenn die Spannung   um den Betrag der Spannung   sinkt, steigt   nur noch mit der halben Geschwindigkeit. d. h. für   ist die Zunahme von   um den Faktor   kleiner.

Statisches Kleinsignalmodell

Bearbeiten

Das statische Kleinsignalmodell beschreibt das Kleinsignalverhalten bei niedrigen Frequenzen und wird deshalb auch als Gleichstrom-Kleinsignalersatzschaltbild bezeichnet.

Aus dem Gummel-Poon-Modell wird durch Linearisierung im Arbeitspunkt das lineare Kleinsignalmodell. Der Arbeitspunkt wird in einem Bereich gewählt, in dem der Transistor nach erfolgter Dimensionierung arbeiten soll. Üblicherweise ist das der Normalbetrieb, weshalb im Weiteren Modelle für den Normalbetrieb gezeigt werden. Nach denselben Prinzipien kann man jedoch auch Modelle für die anderen Transistor-Betriebsarten erstellen.

Die Linearisierung des Gummel-Poon-Modells erfolgt, indem man die Kapazitäten weglässt – da diese bei Gleichstrom nicht wirken – und die Sperrströme vernachlässigt – also IB,I, IB,C und ID,S gleich Null setzt.

 
Statisches Kleinsignalmodell durch Vernachlässigung von Kapazitäten und Sperrströmen im Gummel-Poon-Modell
 
Statisches Kleinsignalmodell nach der Linearisierung von IB und IC

Weiters werden die nichtlinearen Größen   sowie   im Arbeitspunkt A linearisiert:

 
 
 

In der Praxis werden zur weiteren Vereinfachung auch die Bahnwiderstände nicht berücksichtigt. Daraus erhält man das vereinfachte statische Kleinsignalmodell. Bei einer zusätzlichen Vernachlässigung des Early-Effektes durch   erhält man des Weiteren eine alternative Darstellungsart dieses vereinfachten Modells, welche durch Linearisierung aus dem vereinfachten statischen Kleinsignalmodell erstellt wird. Die alternative Darstellungsart ist aufgrund des vernachlässigten Early-Effekts jedoch nur Ausnahmefällen brauchbar, da die Berechnung anhand dieser Vereinfachung meist zu unbrauchbaren Ergebnissen führt. In der Literatur findet man zudem oft eine Darstellung mit einem zusätzlichen Widerstand zwischen Basis und Kollektor, der sich durch die Linearisierung der Kollektor-Basis-Diode aus dem Ebers-Moll-Modell ergibt, jedoch nicht zur Modellierung des Early-Effekts dient.

 
Vereinfachtes statisches Kleinsignalmodell mit vernachlässigten Bahnwiderständen
 
Umgeformtes vereinfachtes statisches Kleinsignalmodell unter zusätzlicher Vernachlässigung des Early-Effekts

Es gelten die Gleichungen

 
 

Modelle für das dynamische Verhalten

Bearbeiten

Gummel-Poon-Modell

Bearbeiten

Das Gummel-Poon-Modell, benannt nach seinen geistigen Vätern Hermann Gummel und H. C. Poon, ist das vollständige Modell eines Bipolar-Transistors und wird zur Schaltungssimulation – etwa in PSpice – verwendet. Es basiert auf dem Transportmodell und modelliert alle statischen und dynamischen Effekte in diesem. Die Formelzeichen sind zu Beginn des Artikels aufgelistet.

 
Gummel-Poon-Modell eines npn-Bipolartransistors

Falls einige Werte im Datenblatt des Transistors nicht angegeben sind, werden (z. B. in PSpice) Standardwerte verwendet. In PSpice werden kommen folgende Standardwerte zur Anwendung:

Standardwerte des Gummel-Poon-Modell in PSpice
Parameter IS BN BI nE nC xT,I fS Udiff,E, Udiff,C, Udiff,S mS,E, mS,C xCSC IS,S, IS,E, IS,C,
RB, RC, RE,
CS0,E, CS0,C, CS0,S,
τ0,N, τ0,I, xτ,N, xT,B,
mS,S, Iτ,N
IK,N, IK,I,
UA,N, UA,I, Uτ,N
Standardwert 10−16 A 100 1 1,5 2 3 0,5 0,75 V 333·10−3 1 0

Ein Standardwert von 0 oder ∞ bedeutet, dass der entsprechende Parameter so gesetzt wird, dass dieser Parameter keinen Einfluss auf die Berechnung hat und auf diese Weise nicht modelliert wird.

Werte für das Gummel-Poon-Modell ausgewählter Einzeltransistoren
Parameter PSpice-
Bezeichnung
BC547B[1] BC557B[2] BUV47[3] BFR92P[4]
IS IS 7 fA 1 fA 974 fA 0,12 fA
BN BF 375 307 95 95
BI BR 1[F 1] 6,5 20,9 10,7
IS,E ISE 68 fA 10,7 fA 2,57 pA 130 fA
nE NE 1,58 1,76 1,2 1,9
IK,N IKF 82 mA 92 mA 15,7 A 160 mA
UA,N VAF 63 V 52 V 100 V 30 V
RBe RBM 10 Ω[F 2] 10 Ω[F 2] 100 mΩ[F 2] 6,2 Ω
RBi[F 3] 0[F 2] 0[F 2] 0[F 2] 7,8 Ω
RB[F 3] 10 Ω[F 2] 10 Ω[F 2] 100 mΩ[F 2] 15 Ω
RC RC 1 Ω 1,1 Ω 35 mΩ 140 mΩ
CS0,E CJE 11,5 pF 30 pF 1,093 nF 1 fF
Udiff,E VJE 500 mV 500 mV 500 mV 710 mV
mS,E MJE 672·10−3 333·10−3 [F 1] 333·10−3 [F 1] 347·10−3
CS0,C CJC 5,25 pF 9,8 pF 364 pF 649 fF
Udiff,C VJC 570 mV 490 mV 500 mV 850 mV
mS,C MJC 315·10−3 332·10−3 333·10−3 [F 1] 401·10−3
xCSC XCJC 1[F 1] 1[F 1] 1[F 1] 130·10−3
fS FC 500·10−3 [F 1] 500·10−3 [F 1] 500·10−3 [F 1] 500·10−3 [F 1]
τ0,N TF 410 ps 612 ps 51,5 ns 27 ps
xτ,N XTF 40 26 205 380·10−3
Uτ,N VTF 10 V 10 V 10 V 330 mV
Iτ,N ITF 1,49 A 1,37 A 100 A 4 mA
τ0,I TR 10 ns 10 ns 988 ns 1,27 ns
xT,I XTI 3[F 1] 3[F 1] 3[F 1] 3[F 1]
xT,B XTB 1,5 1,5 1,5 1,5
Anmerkungen:
  1. a b c d e f g h i j k l m n o entspricht dem Standardwert
  2. a b c d e f g h i Wert nur allgemein angegeben. Bei hohen Frequenzen kommt es zu Ungenauigkeiten.
    Dies wird im Transistorrauschen berücksichtigt. Andernfalls müsste der korrekte Wert durch Messung am einzelnen Bauteil ermittelt werden.
  3. a b RBi wird in PSpice nicht explizit angegeben. Stattdessen wird RB mit RB = RBM + RBi = RBe + RBi angegeben.

Zudem werden in PSpice einige weitere Effekte berücksichtigt, die im PSpice-Referenzhandbuch[5] beschrieben werden, wofür das in PSpice verwendete Modell entsprechend erweitert wurde.

Dynamisches Kleinsignalmodell

Bearbeiten
 
Dynamisches Kleinsignalmodell des Bipolartransistors

Wenn man das vollständige statische Kleinsignalmodell um die Sperrschicht- und Diffusionskapazitäten erweitert, erhält man das dynamische Kleinsignalmodell.

Die Emitterkapazität   setzt sich aus der Emitter-Sperrschicht-Kapazität   und der Diffusionskapazität für den Normalbetrieb   zusammen:

 

Die interne Kollektorkapazität   entspricht der internen Kollektor-Sperrschicht-Kapazität, da die interne Diffusionskapazität   wegen   vernachlässigbar klein ist:

 

Die externe Kollektorkapazität   und die Substratkapazität   entsprechen den jeweiligen Sperrschichtkapazitäten, wobei die Substratkapazität naturgemäß nur bei integrierten Transistoren zu finden ist:

 
Vereinfachtes dynamisches Kleinsignalmodell des Bipolartransistors
 

In der Praxis werden der Emitterwiderstand   und der Kollektorwiderstand   meist vernachlässigt, während der Basiswiderstand   nur in Ausnahmefällen vernachlässigt werden kann, da der Basiswiderstand einen starken Einfluss auf das dynamische Verhalten hat. Zudem wird in der Praxis die interne und externe Kollektorkapazität – ausgenommen bei integrierten Transistoren mit einer überwiegend externen Kollektorkapazität – als interne Kollektorkapazität   zusammengefasst. Daraus erhält man das vereinfachte dynamische Kleinsignalmodell:

Grenzfrequenz im Kleinsignalbetrieb

Bearbeiten

Mit Hilfe des statischen Kleinsignalmodells kann man die Frequenzgänge der Kleinsignalstromverstärkungen   und  , sowie der Transmittanz  , rechnerisch ermitteln. Die jeweiligen Grenzfrequenzen  ,  ,  , sowie die Transitfrequenz   stellen ein Maß für die Schaltgeschwindigkeit und Bandbreite des Transistors dar. Es gilt der Zusammenhang

 

Wird der Transistor in Emitterschaltung mit einer Stromquelle – bzw. mit einer Quelle mit einem Innenwiderstand   von   – betrieben, spricht man von einer Stromsteuerung. Die Grenzfrequenz wird in diesem Fall durch die β-Grenzfrequenz   nach oben begrenzt.

Wird der Transistor hingegen in Emitterschaltung mit einer Spannungsquelle – bzw. mit einer Quelle mit einem Innenwiderstand   von   – betrieben, spricht man von Spannungssteuerung. Die Grenzfrequenz wird in diesem Fall durch die Steilheitsgrenzfrequenz   nach oben begrenzt.

Daraus folgt, dass man bei Spannungssteuerung eine höhere Grenzfrequenz und damit Bandbreite erreichen kann. Das gilt auch für die Kollektorschaltung. Die größte Bandbreite erreicht jedoch die Basisschaltung bei der allgemein die Bedingung   gilt und damit eine Stromsteuerung vorliegt und die Bandbreite durch die α-Grenzfrequenz   nach oben begrenzt wird.

Die Bandbreite der Schaltung ist zusätzlich vom Arbeitspunkt abhängig. In Emitterschaltung mit Stromsteuerung und bei der Basisschaltung erhält man die maximale Bandbreite, indem man den Kollektorstrom   so einstellt, dass die Transitfrequenz den maximalen Wert erreicht. Bei der Emitterschaltung mit Spannungssteuerung besteht ein komplizierterer Zusammenhang, da zwar die Steilheitsfrequenz   mit steigendem Kollektorstrom   abnimmt, aber gleichzeitig die Schaltung der Kollektorschaltung niederohmiger wird und dadurch die ausgangsseitige Bandbreite der Schaltung erhöht wird.

 
Betragsfrequenzgänge für   und  
 
Abhängigkeit der Transitfrequenz eines Transistors vom Kollektorstrom

Die Transitfrequenz   und die Ausgangskapazität in Basisschaltung   (output, grounded base, open emitter) wird im Datenblatt des Transistors angegeben.   entspricht der Kollektor-Basis-Kapazität  . Daraus ergibt sich:

 
 


Literatur

Bearbeiten
  • Ulrich Tietze, Christoph Schenk, Eberhard Gamm: Halbleiter-Schaltungstechnik. 12. Auflage. Springer, 2002, ISBN 3-540-42849-6.
  • Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer: Analysis and Design of Analog Integrated Circuits. Wiley, 2001, ISBN 0-471-32168-0.
  • Simon M. Sze: Physics of Semiconductor Devices. Wiley 1981, ISBN 0-471-05661-8.
  • Hans-Martin Rein, Roland Ranfft: Integrierte Bipolarschaltungen. Springer, 1980, ISBN 3-540-09607-8.
  • Giuseppe Massobrio, Paolo Antognetti: Semiconductor Device Modelling with SPICE. McGraw-Hill Professional, 1998, ISBN 0-07-134955-3.

Einzelnachweise

Bearbeiten
  1. Datenblatt des Transistors BC547B
  2. Datenblatt des Transistors BC557B
  3. Datenblatt des Transistors BUV47
  4. Datenblatt des Transistors BFR92P
  5. MicroSim: PSpice A/D. Reference Manual. MicroSim Corporation, 1996.