Trigonometrisches Polynom

periodische Funktion
(Weitergeleitet von Kreismethode)

Ein trigonometrisches Polynom, auch eine trigonometrische Summe genannt, ist in der reellen Analysis eine endliche, reelle Linearkombination der trigonometrischen Funktionen und , wobei die Linearkombination als Funktion für definiert wird. Diese reellwertigen Funktionen lassen auch eine eindeutige (formal) komplexe Darstellung zu, bei der bestimmte komplexe Linearkombinationen aus den Exponentialfunktionen an Stelle der Kosinus- und Sinus-Funktionen gebildet werden. Mit dieser Darstellung werden Rechnungen häufig vereinfacht. Die reellen trigonometrischen Polynome sind Partialsummen von reellen Fourierreihen und spielen unter anderem bei der Lösung von gewöhnlichen, linearen Differentialgleichungen mit konstanten Koeffizienten und für die diskrete Fouriertransformation eine wichtige Rolle.

In der Funktionentheorie, der Funktionalanalysis und in vielen Anwendungen, wie etwa der analytischen Zahlentheorie (siehe Kreismethode nach Winogradow in diesem Artikel) wird jede beliebige komplexe Linearkombination von Funktionen mit festem reellen als komplexes trigonometrisches Polynom oder komplexe trigonometrische Summe bezeichnet.

Sowohl die reellen als auch die komplexen trigonometrischen Polynome liefern eindeutige Bestapproximationen – zu jedem gegebenen Grad existiert genau eine beste Näherung unter den trigonometrischen Polynomen, die höchstens diesen Grad haben – im quadratischen Mittel für jede Funktion des Funktionenraums, den die erzeugenden trigonometrischen Funktionen jeweils als Orthonormalbasis (Orthogonalsystem) bestimmen.

Lässt man in den Linearkombinationen auch unendlich viele nichtverschwindende „Summanden“ zu, dann gelangt man zu den Begriffen einer reellen bzw. komplexen trigonometrischen Reihe.

Definitionen

Bearbeiten

Reelles trigonometrisches Polynom

Bearbeiten

Als reelles trigonometrisches Polynom wird die für   definierte, reellwertige Funktion

 

bezeichnet, wobei   ist. Die natürliche Zahl   bezeichnet man als den Grad von  , falls   oder   nicht verschwindet. Die Funktion   hat die Periode  .

Beliebige Periode

Bearbeiten

Ein reelles trigonometrisches Polynom kann etwas allgemeiner auch so definiert werden, dass die Periode des Polynoms eine beliebige, positive, reelle Zahl   ist. Setzt man  , dann lauten die Polynome:

 

für die übrigen Parameter gelten die gleichen Voraussetzungen und Bezeichnungen wie im Spezialfall  

Komplexe Darstellung

Bearbeiten

Die komplexe Darstellung des reellen trigonometrischen Polynoms lautet:

  im Fall   bzw.   im Fall einer beliebigen Periode.

Dabei gilt   und umgekehrt lässt sich   durch den Realteil der komplexen Darstellung und   durch ihren Imaginärteil darstellen. Das trigonometrische Polynom ist genau dann reell, wenn   gilt.

Komplexes trigonometrisches Polynom

Bearbeiten

Ist   eine Familie von komplexen Koeffizienten, die für alle bis auf endlich viele Indizes   verschwinden, und   eine positive, reelle Zahl, dann wird die Summe

  als komplexes trigonometrisches Polynom oder komplexe trigonometrische Summe bezeichnet.

In aller Regel ist die unabhängige Variable   in dieser Summe nach wie vor eine reelle Zahl und die Summe stellt dann eine  -periodische Funktion   dar. Hier wird der Betrag der betragsmäßig größten ganzen Zahl  , für die   gilt, als der Grad   des komplexen trigonometrischen Polynoms bezeichnet.

Trigonometrische Reihe

Bearbeiten

Analog zum Begriff des trigonometrischen Polynoms kann auch der Begriff der (formalen) trigonometrischen Reihe definiert werden. Diese werden als Fourierreihen von periodischen Funktionen verwendet.

  • Reelle trigonometrische Reihen lassen sich also wie folgt darstellen:
  mit  
bzw. in der komplexen Darstellung
  mit  .
  • Lässt man die Bedingung für die Koeffizienten   weg, dann erhält man eine komplexe trigonometrische Reihe:
 

Dabei ist immer  , der Definitionsbereich   und die Periode wie bei den entsprechenden trigonometrischen Polynomen  

Eigenschaften

Bearbeiten

Orthogonalität

Bearbeiten

Die trigonometrischen Funktionen, aus denen die reellen trigonometrischen Polynome durch Linearkombination entstehen, erfüllen folgende Orthogonalitätsrelationen  :

  1.  ,
  2.  
  3.  

Für die komplexen Erzeugenden lautet die Orthogonalitätsrelation  :

 

Basiseigenschaft

Bearbeiten

Aus den Orthogonalitätsrelationen folgt, dass die Folge der erzeugenden trigonometrischen Polynome   linear unabhängig ist. Sie bildet bei geeigneter Normierung eine Orthonormalbasis eines reellen Hilbertraumes. Dieser Hilbertraum ist der Lebesgue-Raum  .

Die Familie der Erzeugenden   der komplexen trigonometrischen Polynome ist auch linear unabhängig und bildet bei geeigneter Normierung eine Orthonormalbasis des komplexen Hilbertraumes   der auf dem Einheitskreis definierten, komplexwertigen  -Funktionen, wenn man sie als parametrisierte Laurentreihen betrachtet und ansonsten eine Basis des komplexen Hilbertraums   der komplexwertigen  -Funktionen auf  .

Konvergenz der Reihen

Bearbeiten
  konvergiert.
  • Für reelle trigonometrische Reihen ist das äquivalent dazu, dass die Reihe
  konvergiert.

Auch nicht konvergente Reihen werden als formale trigonometrische Reihen bezeichnet.

Bezeichnung als Polynom

Bearbeiten

An den komplexen trigonometrischen Polynomen wird deutlich, weshalb diese Funktionen als Polynome bezeichnet werden: Schränkt man den Definitionsbereich eines beliebigen komplexen Polynoms   auf den komplexen Einheitskreis ein und parametrisiert diesen als Kurve mit einem reellen Parameter    , dann wird aus dem gewöhnlichen Polynom das trigonometrische Polynom  . Bei komplexen trigonometrischen Polynomen treten im Allgemeinen auch Terme mit negativem „Grad“  , die aus   durch die Parametrisierung hervorgehen, auf. Trigonometrische Polynome entstehen also genau genommen durch die genannte Parametrisierung aus Laurentreihen mit dem Entwicklungspunkt  , die nur endlich viele nichtverschwindende Koeffizienten haben. Man kann jedes trigonometrische Polynom aber auch als Summe von zwei beliebigen gewöhnlichen komplexen Polynomen auffassen, wobei beim einen Polynom der Einheitskreis durch  , beim anderen durch   parametrisiert wird.

Anwendung in der Zahlentheorie

Bearbeiten

In der analytischen Zahlentheorie werden trigonometrische Summen auch als Exponentialsummen bezeichnet. Sie werden als lösungszählende Funktionen verwendet. Diese Anwendung beruht auf der Orthogonalitätsrelation. Für eine übersichtliche Darstellung wird in der Zahlentheorie abkürzend   geschrieben und die Funktion   wird als zahlentheoretische Exponentialfunktion bezeichnet.[1] Die Orthogonalitätsrelation lautet, wenn man sie mit der zahlentheoretischen Exponentialfunktion formuliert:[2]

 

Nun wird an die Stelle von   der Funktionsterm   einer diophantischen Gleichung   gesetzt. Dann kann man die Anzahl   der Lösungen der Gleichung in einer festgelegten endlichen Menge   – etwa den  -Tupeln von natürlichen Zahlen unterhalb einer festgelegten Schranke – durch ein Integral darstellen:

 

Da die Summe endlich ist, kann sie problemlos mit dem Integral vertauscht werden und man erhält

 

also eine Darstellung der Lösungsanzahl als Integral über ein trigonometrisches Polynom. Auf dieses lösungszählende Integral können nun alle Methoden der Funktionentheorie und der Funktionalanalysis angewandt werden. Damit kann für die Lösungsanzahl   zum Beispiel eine asymptotische Formel abgeleitet werden, die angibt, wie sich die Lösungsanzahl verhält, wenn die Schranken von   gegen Unendlich streben.

Kreismethode nach Winogradow

Bearbeiten

Die Idee, das lösungszählende Integral über ein trigonometrisches Polynom in der hier angegebenen Form auf ein zahlentheoretisches Problem anzuwenden, wurde von Winogradow entwickelt und 1937 auf die ternäre Goldbachsche Vermutung angewandt:

Jede ungerade Zahl größer 5 ist als Summe von drei Primzahlen darstellbar.

Dabei ist dann   eine ungerade natürliche Zahl,   die Menge aller Tripel von Primzahlen, die kleiner sind als   und  . So gelang es ihm, zu zeigen, dass für hinreichend große, ungerade   das lösungszählende Integral   ist. Damit kann die Vermutung nur für endlich viele „kleine“, ungerade Zahlen   falsch sein.[3] (→ Siehe auch Satz von Winogradow)

Kreismethode nach Hardy und Littlewood

Bearbeiten

Winogradows Form der Kreismethode ist eine Variante der Kreismethode, die von Hardy und Littlewood entwickelt wurde und von ihnen 1917 mit Erfolg auf das Waringsche Problem angewandt worden ist. In ihrer Formulierung ist die lösungszählende Funktion eine Potenzreihe. Die Anzahlen der Lösungen einer diophantischen Gleichung sind Koeffizienten dieser Reihe – bei der Goldbachschen Vermutung wäre   die Anzahl der Darstellungen der ungeraden Zahl   als Summe von 3 Primzahlen. Anders als bei Winogradow wird hier nicht von vornherein eine Beschränkung der diophantischen Gleichung auf einen endlichen Definitionsbereich vorgenommen. Das lösungszählende Integral, das bei der Hardy-Littlewood-Methode in einer Form, die der von Winogradow gegebenen ähnelt, zur Berechnung von Residuen verwendet wird, kann im Allgemeinen auch Singularitäten auf dem Einheitskreis haben. Es wird daher häufig zunächst auf einem Kreis um den Ursprung mit einem kleineren Radius abgeschätzt oder die Singularitäten werden umlaufen.

Siehe auch

Bearbeiten

Literatur

Bearbeiten

Zahlentheoretische Anwendungen

Bearbeiten
  • Jörg Brüdern: Einführung in die analytische Zahlentheorie. Springer, Berlin, Heidelberg, New York 1995, ISBN 3-540-58821-3.
  • Robert Charles Vaughan: The Hardy-Littlewood Method. 2. Auflage. Cambridge University Press, Cambridge 1997, ISBN 0-521-57347-5.
  • Ivan Matveevitch Vinogradov: The Method of Trigonometrical Sums in the Theory of Numbers. Translated from the Russian and annotated by Klaus Friedrich Roth and Anne Ashley Davenport. New York, Dover 2004.
  • Ivan Matveevitch Vinogradov: Representation of an Odd Number as a Sum of Three Primes. In: Comptes rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S. Nr. 15, 1937, S. 169–172.

Einzelnachweise

Bearbeiten
  1. Brüdern (1995) S. 20.
  2. Alle Variablenbezeichnungen in diesem Abschnitt orientieren sich an informellen, in der Zahlentheorie üblichen Konventionen.
  3. Winogradow (1937) und Weisstein, Eric W. "Vinogradov's Theorem." From MathWorld--A Wolfram Web Resource.