Formel von Faà di Bruno
Die Formel von Faà di Bruno ist eine Formel der Analysis, die vom italienischen Mathematiker Francesco Faà di Bruno (1825–1888) publiziert wurde.
Mit ihr lassen sich höhere Ableitungen von komponierten Funktionen bestimmen, sie verallgemeinert somit die Kettenregel und gehört zu den Ableitungsregeln der Differentialrechnung.
Formulierung
BearbeitenSind und zwei -mal differenzierbare Funktionen, die von einer Variablen abhängen und deren Komposition wohldefiniert ist, und ist der Differentialoperator nach dieser Variablen, so gilt
- .
Die Menge , über die hier summiert wird, enthält alle -Tupel aus nichtnegativen, ganzen Zahlen mit . Jedes solche Tupel lässt sich bijektiv auf eine Partition von abbilden, in dem als Summand -mal vorkommt. Die Anzahl der Summanden ist daher die -te Partitionszahl. Der Quotient der Fakultäten ist ein Multinomialkoeffizient.
Analogie zur Regel von Leibniz
BearbeitenSo wie die Regel von Leibniz die Produktregel auf höhere Ableitungen verallgemeinert, so verallgemeinert die Formel von Faà di Bruno die Kettenregel auf höhere Ableitungen. Letztere Formel ist jedoch beweis- und rechentechnisch weitaus schwieriger.
Bei der Leibniz-Regel gibt es nur Summanden, wohingegen bei der Faà di Brunoschen Formel mit der -ten Partitionszahl deutlich mehr Summanden auftreten.
Aussehen bei kleiner Ableitungsordnung
BearbeitenSchreibt man die Formel für die ersten natürlichen Zahlen aus (oder benutzt Ketten- und Produktregel iterativ), so sieht man, dass die Ausdrücke schnell lang und unhandlich werden und die Koeffizienten nicht offensichtlich sind:
Weitere Ableitungen lassen sich mit Computeralgebrasystemen wie zum Beispiel Mathematica oder Maple ausrechnen.
Anwendung bei der Verkettung von Potenzreihen
BearbeitenSind und zwei Potenzreihen
mit positiven Konvergenzradien und der Eigenschaft
Dann ist die Verkettung beider Funktionen lokal wieder eine analytische Funktion und somit um in eine Potenzreihe entwickelbar:
Nach dem Satz von Taylor gilt:
Mit der Formel von Faà di Bruno kann man diesen Ausdruck nun in einer geschlossenen Formel in Abhängigkeit von den gegebenen Reihenkoeffizienten angeben, da:
Man erhält mit Multiindex-Schreibweise:
Dabei ist der Multinomialkoeffizient zu und ist wieder die Menge aller Partition von (siehe Partitionsfunktion).
Anwendungsbeispiel
BearbeitenMit Hilfe der Formel lassen sich die Koeffizienten in der Laurent-Reihe der Gammafunktion in 0 symbolisch angeben. Mit der Funktionalgleichung und folgt
- .
Dabei gilt nach Faà di Bruno für die -te Ableitung der Gammafunktion an der Stelle
wobei wie oben über die entsprechende Menge von -Tupeln summiert wird. Beim letzten Gleichheitszeichen sind die Ableitungen der Digamma-Funktion benutzt, wobei die Euler-Mascheroni-Konstante und die Riemannsche Zetafunktion bezeichnet.