Glutathion

organische Verbindung, Naturstoff, Tripeptid

Glutathion (GSH), auch γ-L-Glutamyl-L-cysteinylglycin, ist ein Tripeptid, das aus den drei Aminosäuren Glutaminsäure, Cystein und Glycin gebildet wird. Es ist in fast allen Zellen in hoher Konzentration enthalten und gehört zu den wichtigsten als Antioxidans wirkenden Stoffen im Körper. Gleichzeitig ist es eine Reserve für Cystein. Es handelt sich bei Glutathion nicht um ein echtes Tripeptid, da die Amidbindung zwischen Glutaminsäure und Cystein über die γ-Carboxygruppe der Glutaminsäure ausgebildet wird und nicht über die α-Carboxygruppe wie bei einer echten Peptidbindung.

Strukturformel
Strukturformel von Glutathion
Allgemeines
Name Glutathion
Andere Namen
  • 2-Amino-5-{[1-((carboxymethyl)amino)-1-oxo-3-sulfanylprop-2-yl]amino}-5-oxovaleriansäure
  • γ-L-Glutamyl-L-cysteinyl-glycin
  • GSH
  • ECG
  • GLUTATHIONE (INCI)[1]
Summenformel C10H17N3O6S
Kurzbeschreibung

weißer Feststoff[2]

Externe Identifikatoren/Datenbanken
CAS-Nummer 70-18-8
EG-Nummer 200-725-4
ECHA-InfoCard 100.000.660
PubChem 124886
DrugBank DB00143
Wikidata Q116907
Eigenschaften
Molare Masse 307,33 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

185–195 °C[2]

Löslichkeit

löslich in Wasser (100 g·l−1 bei 20 °C)[2] und Dimethylformamid[3]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[4]
keine GHS-Piktogramme

H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze[4]
Toxikologische Daten

5000 mg·kg−1 (LD50Mausoral)[4]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

Actinobakterien produzieren Mycothiol anstelle von Glutathion.

Biosynthese

Bearbeiten

Glutathion kann vom Körper aus den Aminosäuren L-Glutaminsäure, L-Cystein und Glycin in einem zweistufigen Prozess synthetisiert werden.

Alle Zellen des menschlichen Körpers besitzen die Fähigkeit, GSH zu synthetisieren. Dabei ist die Biosynthese des Stoffs in der Leber essentiell: Mäuse mit gestörter Glutathionproduktion in der Leber sterben innerhalb eines Monats nach der Geburt.[5]

Die meisten Eukaryoten sind zur GSH-Synthese fähig, nicht aber etwa Entamoeba und Giardien. Der Biosyntheseweg kommt in einigen Bakterien vor, wie z. B. Cyanobakterien und Proteobakterien, fehlt aber vielen anderen Bakterien. Unter den Archaeen können nur Halobakterien GSH synthetisieren.

Funktion

Bearbeiten

Cystein-Reserve

Bearbeiten

Am bekanntesten ist GSH als Hauptstoff des reduktiven Pools. Eine konstante Versorgung mit Cystein ist unentbehrlich für die Proteinsynthese, aber Cystein ist reaktionsfreudig und geht in aerober Umgebung durch Oxidation zu Cysteinsulfin- und -sulfonsäure ständig irreversibel verloren. GSH stellt somit auch eine Notreserve für die Aminosäure Cystein dar. Außerdem wird es zur Taurinsynthese verwendet.

Im menschlichen Blutplasma sind etwa drei Gramm Cystein in Form von GSH enthalten, was einer Reserve für drei Tage entspricht.[6]

Redox-Puffer

Bearbeiten

GSH kann helfen, zelluläre Makromoleküle wie etwa Proteine und Membranlipide vor „freien Radikalen“ (reaktive Sauerstoffspezies, ROS) zu schützen. Dabei wird Glutathion oxidiert und geht von seiner monomeren Form GSH in ein Dimer GSSG über.

ROS, die u. a. im Verlauf der Zellatmung entstehen können, stellen eine erhebliche Gefahr für zahlreiche Zellbestandteile dar. Reduziertes Glutathion (GSH) besitzt eine freie Thiolgruppe und kann so seinerseits Elektronen auf ROS übertragen und sie so unschädlich machen. Jeweils zwei oxidierte Glutathion-Moleküle verbinden sich unter Ausbildung einer Disulfidbrücke zu einem Glutathion-Disulfid (GSSG). Durch das Enzym Glutathion-Reduktase können aus einem GSSG-Dimer unter Verbrauch von NADPH wieder zwei reduzierte GSH hergestellt werden. Das Redoxpotential von GSH beträgt −240 mV[7] und liegt durch die Aktivität der Glutathion-Reduktase zu 90 % reduziert vor.

Biotransformation

Bearbeiten

GSH spielt eine wichtige Rolle in Phase II der Biotransformation schädlicher Stoffe. Mit GSH konjugierte Stoffe sind gewöhnlich besser wasserlöslich und können über die Niere ausgeschieden werden. Dabei katalysiert die meist im Zytosol lokalisierte Glutathion-S-Transferase die Reaktion von GSH mit elektrophilem Kohlenstoff. Dabei können Halogen-, Sulfat-, Sulfonat-, Phosphat- und Nitro-Gruppen durch Glutathion substituiert werden. Des Weiteren kann GSH an aktivierte Doppelbindungen addiert werden und reaktive Epoxidringe öffnen. Die toxifizierende (giftende) Wirkung umfasst die Aktivierung von vicinalen Dihaloalkanen unter Bildung eines hochreaktiven Episulfoniumringes sowie eine β-Lyase vermittelte Überführung der GSH-Konjugate in der Niere zu reaktiven Verbindungen.

Weitere Funktionen

Bearbeiten

In Pflanzen, Nematoden, Algen und Pilzen dient das Glutathion auch als Substrat für die Synthese von Phytochelatinen, die wie Metallothioneine eine wichtige Rolle bei der Bindung von Schwermetallen spielen.

Eine weitere Aufgabe erfüllt Glutathion bei der Synthese bestimmter Leukotriene, wie zum Beispiel bei der Synthese von Leukotrien C4. Aus Leukotrien A4 entsteht mithilfe der Glutathion-S-Transferase Leukotrien C4.

Geschichte

Bearbeiten

Als Frederick Gowland Hopkins 1921 ein cysteinhaltiges Peptid in Hefe und Tierzellen beschrieb und Glutathion nannte, war man zunächst der Ansicht, es handele sich um γ-Glutamylcystein. Erst Harington und Mead konnten 1935 durch Totalsynthese die später vermutete tatsächliche Struktur bestätigen.[8][9]

Nahrungsergänzungsmittel

Bearbeiten

Aufgrund seiner antioxidativen Wirkung wird Glutathion als Nahrungsergänzungsmittel verkauft.[10] Die Bioverfügbarkeit von über die Nahrung zugeführtem Glutathion wird im Allgemeinen als sehr gering eingeschätzt, wurde aber im April 2013 durch eine Studie des Penn State College an 54 Studenten mit positivem Ergebnis untersucht.[11][12] Parenterale Zufuhr erhöht den GSH-Spiegel in den Zellen.[13] Ein potentieller gesundheitlicher Nutzen Glutathions, beispielsweise als Anti-Krebsmittel[14] oder als Mittel in der Altershemmung[15], muss noch in klinischen Studien weiter untersucht werden. Eine Stimulierung der Glutathionproduktion in der Leber durch Gabe von Acetylcystein[16] (als Cysteindonor) wird in einer Stellungnahme der EFSA aus dem Jahr 2004 mit möglichen gesundheitlichen Risiken bei gesunden Kontrollpersonen in Verbindung gebracht.[17]

Als umstrittenes „Krebsmittel“ wurde Glutathion in einer Mischung mit Anthocyanen unter dem Namen Recancostat comp. verkauften Präparat Mitte der 1990er Jahre bekannt.[18]

Literatur

Bearbeiten
  • Ashley Wilber (Hrsg.): Glutathione: Dietary Sources, Role in Cellular Functions and Therapeutic Effects. Nova Science Publishers, New York 2015, ISBN 978-1-63463-372-7.
Bearbeiten

Einzelnachweise

Bearbeiten
  1. Eintrag zu GLUTATHIONE in der CosIng-Datenbank der EU-Kommission, abgerufen am 28. Dezember 2020.
  2. a b c Datenblatt Glutathion bei Merck, abgerufen am 14. Dezember 2010.
  3. Eintrag zu Glutathion. In: Römpp Online. Georg Thieme Verlag, abgerufen am 5. Mai 2011.
  4. a b c Datenblatt Glutathione bei Sigma-Aldrich, abgerufen am 13. Februar 2019 (PDF).
  5. Y. Chen u. a.: Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. In: Hepatology. 45, 2007, S. 1118.
  6. David Heber, George L. Blackburn, Vay Liang W. Go, John Milner (Hrsg.): Nutritional Oncology. Academic Press, 2006, ISBN 0-12-088393-7, S. 310.
  7. F. Aslund, K. D. Berndt, A. Holmgren: Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. In: J Biol Chem. 272(49), 1997, S. 30780–30786. PMID 9388218.
  8. F. G. Hopkins: On an autoxidisable constituent of the cell. In: Biochem J. 15, 1921, S. 286–305. biochemj.org
  9. C. R. Harington, T. H. Mead: Synthesis of glutathione. In: Biochem. J. Band 29, Nr. 7, Juli 1935, S. 1602–1611, PMID 16745829, PMC 1266669 (freier Volltext) – (biochemj.org).
  10. Markus Minoggio: Was der Körper wirklich braucht …: Über Nahrungsergänzungsmittel, Vitamine und Pseudoprodukte. Goldegg Verlag, 2008, ISBN 978-3-901880-16-2, S. 194.
  11. Research shows oral supplement increases body’s storage of antioxidant. In: Penn State News. 22. April 2013.
  12. Glutathion-News (deutsche Übersetzung der Penn State Studie): Klinische Tests beweisen die Langzeit-Wirksamkeit von oral zugeführtem Glutathion als Nahrungsergänzung (Memento vom 22. Februar 2014 im Internet Archive)
  13. M. K. Robinson, M. S. Ahn, J. D. Rounds, J. A. Cook, D. O. Jacobs, D. W. Wilmore: Parenteral glutathione monoester enhances tissue antioxidant stores. In: JPEN J Parenter Enteral Nutr. 16(5), Sep-Oct 1992, S. 413–418.
  14. Ben Pfeifer, Joachim Preiß, Clemens Unger (Hrsg.): Onkologie integrativ: Konventionelle und Komplementäre Therapie. Urban & Fischer Verlag/Elsevier, 2006, ISBN 3-437-56420-X, S. 357–358.
  15. P. Kumar, C. Liu, J. Suliburk, J. W. Hsu, R. Muthupillai, F. Jahoor, C. G. Minard, G. E. Taffet, R. V. Sekhar: Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. In: J. Gerontol. A Biol. Sci. Med. Sci. 78(1), Jan 2023, S. 75–89. doi:10.1093/gerona/glac135. PMID 35975308.
  16. Glutathion-News: Reduziertes Glutathion (GSH) oder GSH-Vorstufen wie N-Acetylcystein (NAC)? (Memento vom 10. Februar 2013 im Internet Archive)
  17. N-Acetyl-L-cystein zur Verwendung in Lebensmitteln für besondere Ernährungszwecke sowie in Lebensmitteln für besondere medizinische Zwecke (PDF), EFSA-Gutachten.
  18. Erstattung von Arzneimitteln, Begriff des Fertigarzneimittels. (Memento vom 4. März 2009 im Internet Archive) LSG Niedersachsen-Bremen, Urteil vom 15. Februar 2005, Az.: L 4 KR 44/01. arzneimittel-und-recht.de; abgerufen am 10. Mai 2010.