Golomb-Dickman-Konstante
Die Golomb-Dickman-Konstante ist eine mathematische Konstante aus der Kombinatorik und Zahlentheorie. Sie stellt einerseits den asymptotischen Erwartungswert der relativen Länge des längsten Zyklus einer zufälligen Permutation dar, andererseits gibt sie den asymptotischen Erwartungswert der relativen Anzahl der Ziffern des größten Primfaktors einer natürlichen Zahl an. Die Konstante ist nach dem US-amerikanischen Mathematiker Solomon W. Golomb und dem schwedischen Aktuar Karl Dickman benannt, die sie unabhängig voneinander entdeckten.
Definition
BearbeitenDie Golomb-Dickman-Konstante ist definiert als
wobei der Integrallogarithmus und die Integralexponentialfunktion sind.[1][2]
Vorkommen
BearbeitenZyklen in Permutationen
BearbeitenBezeichnet die Anzahl der disjunkten Zyklen der Länge einer Permutation , dann ist
die Länge des längsten Zyklus von . Für den Erwartungswert der relativen Länge des längsten Zyklus einer (gleichverteilt) zufälligen Permutation der Länge gilt asymptotisch[1]
- .
Hierbei ist die Dickman-Funktion die eindeutige stetige Lösung der Delay-Differentialgleichung
mit .[3]
Primfaktoren
BearbeitenBezeichnet den größten Primfaktor einer zufälligen natürlichen Zahl , dann gilt[1][4]
für mit der Dickman-Funktion . Hieraus folgt
- .
Die Konstante gibt demnach auch den asymptotischen Erwartungswert der relativen Anzahl der Ziffern des größten Primfaktors einer natürlichen Zahl an.[5] Allgemein entspricht sogar die gesamte Verteilung der Anzahl der Ziffern der Primfaktoren einer natürlichen Zahl asymptotisch der Verteilung der Längen der Zyklen einer zufälligen Permutation.[1]
Literatur
Bearbeiten- Steven R. Finch: Mathematical Constants. Cambridge University Press, 2003, ISBN 978-0-521-81805-6.
Einzelnachweise
Bearbeiten- ↑ a b c d Steven R. Finch: Mathematical Constants. Cambridge University Press, 2003, S. 284–292.
- ↑ Larry A. Shepp, Stuart P. Lloyd: Ordered cycle lengths in a random permutation. In: Trans. Amer. Math. Soc. Nr. 121, 1966, S. 350–557.
- ↑ Solomon W. Golomb: Random permutations. In: Bull. Amer. Math. Soc. Nr. 70, 1964, S. 747.
- ↑ Karl Dickman: On the frequency of numbers containing prime factors of a certain relative magnitude. In: Arkiv för Mat., Astron. och Fys. 22A, 1930, S. 1–14.
- ↑ Donald E. Knuth, Luis Trabb Pardo: Analysis of a simple factorization algorithm. In: Theor. Comput. Sci. Nr. 3, 1976, S. 321–348.
Weblinks
Bearbeiten- Eric W. Weisstein: Golomb-Dickman Constant. In: MathWorld (englisch).