Ordnungsstatistik

Begriff der zufälligen Ordnungen

In der Statistik bezeichnet die -te Ordnungsstatistik (auch Ordnungsgröße genannt[1]) den -kleinsten Wert einer Stichprobe.[2] Ordnungsstatistiken sind damit spezielle Zufallsvariablen. Sie werden aus einer vorgegebenen Gruppe von Zufallsvariablen gewonnen und modifizieren diese so, dass die Realisierungen der Ordnungsstatistik den Realisierungen der zugrunde liegenden Zufallsvariablen entsprechen, aber immer der Größe nach geordnet sind.

Daher treten Ordnungsstatistiken insbesondere bei der Untersuchung von zufälligen Strukturen auf, die mit einer Ordnung versehen sind. Dazu zählt beispielsweise die Analyse von Wartezeitprozessen oder die Bestimmung von Schätzfunktionen für den Median oder Quantile.

Definition

Bearbeiten

Gegeben seien reelle Zufallsvariablen  . Sind die Zufallsvariablen bindungsfrei, nehmen also fast sicher paarweise verschiedene Werte an, formell ausgedrückt

  für alle  ,

so definiert man

 

und

 

für  . Dann heißen   die Ordnungsstatistiken von  .[2] Die Zufallsvariable   wird dann auch die  -te Ordnungsstatistik genannt.

Sind die Zufallsvariablen nicht bindungsfrei, so lassen sich die Ordnungsstatistiken definieren als

 .[2]

Hierbei bezeichnet   die Indikatorfunktion auf der Menge  . Im bindungsfreien Fall stimmen beide Definitionen überein. Nicht alle Autoren fordern wie oben, dass die Zufallsvariablen fast sicher ungleiche Werte annehmen. Die Eigenschaften der Ordnungsstatistiken variieren dann leicht.

Für die  -te Ordnungsstatistik der Stichprobenvariablen   sind alternative Notationen gebräuchlich:  [2],  [3],  [4][5],  [6] oder  [7]

Eigenschaften

Bearbeiten

Fordert man in der Definition

  für alle  ,

so gilt

  fast sicher.[2]

Äquivalent dazu gilt für die Realisierungen

  für fast alle Ergebnisse  .

Die Realisierungen der Ordnungsstatistiken sind also (fast sicher) strikt aufsteigend.

Verzichtet man auf die Forderung, dass die Zufallsvariablen fast sicher nicht dieselben Werte annehmen sollen, so gilt entsprechend

  fast sicher.[8]

Die Realisierungen sind dann nur noch (fast sicher) aufsteigend.

Geordnete Stichprobe

Bearbeiten

Die geordneten Stichprobenwerte entstehen, wenn die Werte   einer Stichprobe einen Größenvergleich erlauben und der Größe nach angeordnet werden.[9][3] Meistens erfolgt die Anordnung nichtfallend, so dass   gilt. Man nennt den Vektor   oft kurz Stichprobe und den Vektor   dann geordnete Stichprobe. Beispielsweise führt die Stichprobe   zur geordneten Stichprobe  .

Es gibt eine Verallgemeinerung für eine Zufallsstichprobe, bei der   ein Vektor stochastisch unabhängiger und identisch verteilter reeller Zufallsvariablen ist. Der Vektor  , dessen  -te Komponente die  -te Ordnungsstatistik ist, heißt dann geordnete Stichprobe[9][3], geordnete Statistik[10], vollständige Ordnungsstatistik oder kurz Ordnungsstatistik[11], Positionsstichprobe[9] oder Variationsreihe[9]. Die  -te Ordnungsstatistik heißt auch  -te geordnete Statistik[10],  -te Ranggröße[9] oder Positionsstichprobenfunktion  -ten Rangs[9].

Verteilung der Ordnungsstatistiken

Bearbeiten

Die Zufallsvariablen   seien stochastisch unabhängig und identisch verteilt mit der Verteilungsfunktion  , dann lassen sich die Verteilungsfunktionen der Ordnungsstatistiken explizit angegeben.

Für die Verteilungsfunktion der  -ten Ordnungsstatistik ( ) gilt

 [12]

Wichtige Spezialfälle der Verteilung ergeben sich für das Minimum ( ) und Maximum ( ) als[12]

 
 

Die Zufallsvariablen   seien stochastisch unabhängig und identisch verteilt mit der Verteilungsfunktion   und der Dichtefunktion  , dann hat die  -te Ordnungsstatistik   die Dichtefunktion[13]

 

und die gemeinsame Dichtefunktion der geordneten Stichprobe   ist[14]

 

Anwendung

Bearbeiten

Empirische Verteilungsfunktion

Bearbeiten

Eine konkrete geordnete Stichprobe   kann zu einer alternativen Definition der empirischen Verteilungsfunktion  ,

 

verwendet werden, denn es gilt[15]

 

Eine analoge Darstellung gilt für die empirische Verteilungsfunktion als Zufallsgröße.

Rangstatistiken

Bearbeiten

In der nichtparametrischen Statistik spielen Rangstatistiken eine herausragende Rolle. Diese lassen sich über Ordnungsstatistiken definieren.   sei eine Zufallsstichprobe ohne Bindungen. Für die geordnete Stichprobe gilt dann   mit Wahrscheinlichkeit Eins. Wenn   gilt, dann heißt   der Rang[16], die Rangzahl[3] oder der Rangplatz[3] der  -ten Beobachtung oder die  -te Rangstatistik. Der Vektor   heißt dann Rangvektor[17] der Stichprobenvariablen  . Der Rangvektor heißt auch vollständige Rangstatistik oder kurz Rangstatistik.

Ein wichtiger Zusammenhang zwischen der geordneten Stichprobe und der Rangstatistik wird durch folgende Aussage festgehalten. Die stochastisch unabhängigen Zufallsvariablen   seien stetig und stochastisch unabhängig verteilt. Dann sind die geordnete Stichprobe   und der Rangvektor   stochastisch unabhängig.[18]

In einem allgemeineren Sinn sind Rangstatistiken solche Stichprobenfunktionen, die von den Stichprobenvariablen nur über den Vektor der Rangzahlen abhängen.[19] Rangstatistiken in diesem allgemeineren Sinn sind die Bausteine zahlreicher nichtparametrischer Testverfahren.[20]

Nichtparametrische Schätzverfahren

Bearbeiten

Die geordnete Stichprobe   spielt eine zentrale Rolle in der nichtparametrischen Statistik, da sie eine suffiziente und vollständige Statistik ist.[21]

Zudem können aus Ordnungsstatistiken schwach konsistente Schätzer für Quantile abgeleitet werden. Weiter lassen sich durch oben genannte Verteilung über Faltungen und Transformationssätze die Verteilung von wichtigen Maßzahlen wie dem Median oder der Spannweite gewinnen.

Beispiel

Bearbeiten
 
Abbildung 1: Wahrscheinlichkeitsdichten der Ränge 10 (Gold), 9 (Silber) und 8 (Bronze)

Es wird das Finale eines Wettbewerbs der Leichtathletik, bestehend aus den besten   Teilnehmern, ausgetragen. In diesem Beispiel wird angenommen, dass die Leistungsdichte im Finale des Wettkampfes sehr groß ist und es daher keine Favoriten für die Medaillen gibt. Für die zufällige Gesamtpunktzahl jedes Athleten wird daher dieselbe stetige Gleichverteilung im Punktebereich von   bis   angenommen. Es entscheidet demnach ausschließlich die Tagesform über die Gesamtpunktzahl, welche starken Schwankungen unterliegt, und alle Athleten besitzen das gleiche Leistungspotential. Setzt man die Dichtefunktion

 

und die Verteilungsfunktion

 

der stetigen Gleichverteilung in die obige Dichtefunktion der Ordnungsstatistik ein, erhält man die Verteilungen für die einzelnen Ränge. Da die Punktzahlen in der Ordnungsstatistik aufsteigend sortiert sind, erhält man für   die Wahrscheinlichkeitsverteilung für die Goldmedaille, für   die der Silbermedaille und für   die der Bronzemedaille. Der nebenstehenden Grafik ist bereits zu entnehmen, dass für die Goldmedaille eine höhere Punktzahl zu erwarten ist als für die Silber- oder Bronzemedaille. Da die Punkte in diesem Beispiel als stetige Gleichverteilung modelliert wurden, ist die  -te Ordnungsstatistik für   (siehe Abbildung 1) jeweils Beta-verteilt (multipliziert mit  ) mit den Parametern   und  . Der Erwartungswert einer solchen Betaverteilung ist  . Für die Goldmedaille ist daher eine Punktzahl von  , für Silber   und für Bronze   zu erwarten. Falls ein Athlet bereits   Punkte erhalten hat und auf die Punktzahlen der anderen Sportler wartet, kann er unter den gemachten Annahmen seine eigenen Chancen für Gold berechnen. Die Wahrscheinlichkeit, dass die   anderen Athleten alle schlechter abschneiden, beträgt  . Falls der Athlet insgesamt   Punkte erhält, wie für die Goldmedaille erwartet, wird er also trotzdem nur mit einer Wahrscheinlichkeit von   die Goldmedaille bekommen.

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Claudia Czado, Thorsten Schmidt: Mathematische Statistik. Springer-Verlag, Berlin Heidelberg 2011, ISBN 978-3-642-17260-1, S. 23, doi:10.1007/978-3-642-17261-8.
  2. a b c d e Hans-Otto Georgii: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. Walter de Gruyter, Berlin 2009, ISBN 978-3-11-021526-7, S. 242–243, doi:10.1515/9783110215274.
  3. a b c d e Guido Walz (Hrsg.): Lexikon der Mathematik. 2. Auflage. Band 2. Eig bis Inn. Springer Spektrum, Berlin 2017, ISBN 978-3-662-53503-5, geordnete Stichprobe, S. 277, doi:10.1007/978-3-662-53504-2.
  4. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 53.
  5. Norbert Henze: Stochastik für Einsteiger. Eine Einführung in die faszinierende Welt des Zufalls. 10. Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-03076-6, S. 323, doi:10.1007/978-3-658-03077-3.
  6. Jaroslav Hájek, Zbyněk Šidák, Pranab K. Sen: Theory of Rank Tests. 1999, S. 35.
  7. Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer, Berlin / Heidelberg 2011, ISBN 978-3-642-21025-9, S. 302, doi:10.1007/978-3-642-21026-6.
  8. David Meintrup, Stefan Schäffler: Stochastik. Theorie und Anwendungen. Springer-Verlag, Berlin Heidelberg New York 2005, ISBN 978-3-540-21676-6, S. 290, doi:10.1007/b137972.
  9. a b c d e f P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, geordnete Stichprobe, S. 141.
  10. a b Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 41.
  11. Galen R. Shorack: Probability for Statisticians (= Springer Texts in Statistics). 2. Auflage. Springer, Cham 2017, ISBN 978-3-319-52206-7, S. 120, doi:10.1007/978-3-319-52207-4.
  12. a b Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 57.
  13. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 56.
  14. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, Satz 4, S. 55.
  15. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 47.
  16. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 42.
  17. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, S. 55.
  18. Herbert Büning, Götz Trenkler: Nichtparametrische Statistische Methoden. 1994, Satz 5, S. 65.
  19. Jaroslav Hájek, Zbyněk Šidák, Pranab K. Sen: Theory of Rank Tests. 1999, S. 57.
  20. Jaroslav Hájek, Zbyněk Šidák, Pranab K. Sen: Theory of Rank Tests. 1999.
  21. P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, geordnete Stichprobe, S. 142.