Das Periodogramm ist ein Schätzer für die spektrale Leistungsdichte eines Signals. Gesucht ist also eine Funktion , welche die Verteilung der Leistung (oder Energie) des Signals auf die Kreisfrequenz angibt. Der Ausdruck wurde von Arthur Schuster 1898 geprägt.[1] Die Methode wird eingesetzt in der Signalverarbeitung, Elektrotechnik, Physik und Ökonometrie. Ein wichtiges Beispiel sind Spektrum-Analysatoren.

Im mathematischen Sinn ist das Periodogramm ein nicht konsistenter Schätzer, siehe auch Spektraldichteschätzung.

Ein Leistungsdichtespektrum (Amplitudenquadrat) zweier Sinus-Basisfunktionen als Funktion der Frequenz.

Kontext und Konventionen

Bearbeiten

In der Regel sind nur Abtastwerte des Signals   zu diskreten Zeitpunkten   mit konstanter Abtastdauer   gegeben, und man beschränkt sich zur Abschätzung auf   Abtastwerte, z. B.   mit  , d. h. auf ein Zeitintervall der Dauer  .

Ein wesentlicher Schritt des Verfahrens ist eine diskrete Fourier-Transformation. Die Einschränkung der Fourier-Transformation auf ein Zeitintervall der Dauer   lässt sich erreichen durch Multiplikation des Signals mit einer Fensterfunktion  . Im einfachsten Fall ist   eine Rechteckfunktion der Breite  .

Um Artefakte im Spektrum (aufgrund der Unstetigkeiten des Rechteckfensters) zu verringern, werden jedoch in der Regel Fenster mit langsameren Änderungen und eigenen Bezeichnungen verwendet, z. B. das Parzen-Fenster oder das „Welch-Fenster“. Man spricht dann von einem modifizierten Periodogramm.[2]

Für die diskrete Fouriertransformierte des Signals   wird die Schreibweise   verwendet. Hierbei sind nur Kreisfrequenzen   mit   zulässig.

Definition

Bearbeiten

Das Periodogramm ist definiert gemäß

 

In Übereinstimmung mit dem Abtasttheorem ist das Periodogramm  -periodisch. Man beschränkt sich daher auf ein Intervall (Brillouin-Zone)   oder  .

Den Normierungsfaktor betreffend gibt es verschiedene Konventionen. Eine wichtige Kenngröße hierbei ist das mittlere Amplitudenquadrat   (die mittlere Leistung) des Signals. Die Normierung ist so gewählt, dass der Mittelwert von   bestmöglich mit   übereinstimmt.

Falls die Amplitude des Signals digitalisiert ist und Maximalwert   hat, ist das Periodogramm auch relativ zum Maximum normierbar (Fullscale). Das Maximum wird für monochromatische Signale   erreicht, das Full-Scale Periodogramm ist

 

Beispiele

Bearbeiten

Weißes Rauschen

Bearbeiten

Es sei   ein weißes Rauschen mit Varianz  ,  . Das Ensemble-Mittel des Betragsquadrats der Fourier-Transformierten ist dann

 

Das Periodogramm hat den Mittelwert  , und zwar unabhängig von der Fensterlänge. Alle Frequenzen geben denselben Energiebeitrag.

Konstantes Signal

Bearbeiten

Für den Frequenz-Mittelwert von   lassen sich allgemeine Aussagen machen. Ausgangspunkt ist

 

Für konstantes Signal   wird

 

Der Mittelwert des Periodogramms ist (unabhängig von  ) ebenfalls  . Das Periodogramm liefert bei konstantem Signal einen Peak bei Frequenz  . Mit wachsendem   wird dieser Peak höher und schmäler.

Rechteck-Fenster

Bearbeiten

Im Fall eines Rechteck-Fensters   gilt die Parseval-Gleichung  . Durch Division durch   folgt der Mittelwert des Periodogramms  . Dieser Wert ist von   unabhängig, sofern dies für das mittlere Amplitudenquadrat   gilt.

Einschränkungen und Verbesserungen

Bearbeiten

Die Zahl der Werte im Periodogramm wächst mit der Fensterlänge  , die Werte werden dabei jedoch nicht genauer. Im Fall eines weißen Rauschens mit Amplitude   bleibt die Varianz der Periodogramm-Werte bei wachsender Fensterlänge von der Größenordnung  .[3] Abhilfe schafft eine Mittelung benachbarter Werte oder eine Mittelung über mehrere Periodogramme.[2]

Kontinuierliches Signal

Bearbeiten

Für ein auf dem Zeit-Kontinuum definiertes Signal   ist die Fourier-Transformierte des Produktes von Signal und Fensterfunktion

 

Das Periodogramm ist

 

Wie beim abgetasteten Signal bleibt die Standardabweichung der Periodogramm-Werte bei wachsender Zeitreihenlänge   im ungünstigsten Fall von derselben Größenordnung wie die Werte selber.

Einzelnachweise

Bearbeiten
  1. Arthur Schuster: On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena, Terrestrial Magnetism and Atmospheric Electricity, 3, S. 13–41, 1898
  2. a b William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Michael Metcalf: Numerical Recipes in C, Cambridge University Press, 1992, ISBN 0-521-43108-5
  3. Monson H. Hayes: Statistical Digital Signal Processing and Modeling, John Wiley & sons, inc, 1996, ISBN 978-0-471-59431-4