Plancherel-Maß

Wahrscheinlichkeitsmaß in der Mathematik

In der Mathematik ist das Plancherel-Maß ist ein Wahrscheinlichkeitsmaß, welches auf der Menge der irreduziblen Darstellungen einer lokalkompakte Gruppe definiert wird.

Das Plancherel-Maß auf halbeinfachen Lie-Gruppen ist ein von Harish-Chandra eingeführtes wichtiges Konzept der Darstellungstheorie von Gruppen.

Definition auf endlichen Gruppen

Bearbeiten

Sei   die Menge der irreduziblen Darstellungen   einer endlichen Gruppe  . Das Plancherel-Maß auf   ist für eine Darstellung   definiert als[1]

 

Definition auf halbeinfachen Lie-Gruppen

Bearbeiten

Sei   eine reelle reduktive Gruppe. Betrachte die reguläre Darstellung (durch Links- und Rechtsmultiplikation) von   auf  , also dem Vektorraum der bezüglich des Haarmaßes quadratisch integrierbaren Funktionen. Dann gibt es eine Integral-Zerlegung

 

wobei   die Dualgruppe (also die Gruppe der Äquivalenzklassen irreduzibler Darstellungen von  ) und   ist.

Das durch diese Zerlegung auf der Dualgruppe   definierte Maß   ist das Plancherel-Maß. Die Zerlegung und damit das Plancherel-Maß wurden explizit von Harish-Chandra beschrieben. Insbesondere bewies er, dass der Träger von   im Unterraum der temperierten Darstellungen enthalten ist.

Literatur

Bearbeiten
  • Harish-Chandra (1966), "Discrete series for semisimple Lie groups. II. Explicit determination of the characters", Acta Mathematica, 116 (1): 1–111

Einzelnachweise

Bearbeiten
  1. Alexei Borodin, Andrei Okounov und Grigori Olshanski: Asymptotics of Plancherel measures for symmetric groups. In: Journal of the American Mathematical Society. Band 13, Nr. 3, 2000, S. 481–515, doi:10.1090/S0894-0347-00-00337-4.