Kovarianzmatrix

Verallgemeinerung der Varianz auf mehrdimensionale Zufallsvariablen
(Weitergeleitet von Präzisionsmatrix)
Dies ist die gesichtete Version, die am 29. April 2024 markiert wurde. Es existiert 1 ausstehende Änderung, die noch gesichtet werden muss.

In der Stochastik ist die Kovarianzmatrix die Verallgemeinerung der Varianz einer eindimensionalen Zufallsvariable auf eine mehrdimensionale Zufallsvariable, d. h. auf einen Zufallsvektor. Die Elemente auf der Hauptdiagonalen der Kovarianzmatrix stellen die jeweiligen Varianzen dar, und alle übrigen Elemente Kovarianzen. Die Kovarianzmatrix wird auch Varianz-Kovarianzmatrix oder selten Streuungsmatrix bzw. Dispersionsmatrix (lateinisch dispersio „Zerstreuung“, von dispergere „verteilen, ausbreiten, zerstreuen“) genannt und ist eine positiv semidefinite Matrix. Sind alle Komponenten des Zufallsvektors linear unabhängig, so ist die Kovarianzmatrix positiv definit.

Dichtefunktion einer um zentrierten zweidimensionalen Gauß-Verteilung mit der Kovarianzmatrix

Definition

Bearbeiten

Sei   ein Zufallsvektor

 ,

wobei   den Erwartungswert von  ,   die Varianz von   und   die Kovarianz der reellen Zufallsvariablen   und   darstellt. Der Erwartungswertvektor von   ist dann gegeben durch (siehe Erwartungswert von Matrizen und Vektoren)

 ,

d. h. der Erwartungswert des Zufallsvektors ist der Vektor der Erwartungswerte. Eine Kovarianzmatrix für den Zufallsvektor   lässt sich wie folgt definieren:[1]

 

Die Kovarianzmatrix wird mit  , oder   notiert und die Kovarianzmatrix der asymptotischen Verteilung einer Zufallsvariablen mit   oder  . Die Kovarianzmatrix und der Erwartungswertvektor sind die wichtigsten Kenngrößen einer Wahrscheinlichkeitsverteilung. Sie werden bei einer Zufallsvariablen als Zusatzinformationen wie folgt angegeben:  . Die Kovarianzmatrix als Matrix aller paarweisen Kovarianzen der Elemente des Zufallsvektors enthält Informationen über seine Streuung und über Korrelationen zwischen seinen Komponenten. Wenn keine der Zufallsvariablen   degeneriert ist (d. h. wenn keine von ihnen eine Varianz von Null aufweist) und kein exakter linearer Zusammenhang zwischen den   vorliegt, dann ist die Kovarianzmatrix positiv definit.[1] Man spricht außerdem von einer skalaren Kovarianzmatrix, wenn alle Außerdiagonaleinträge der Matrix Null sind und die Diagonalelemente dieselbe positive Konstante darstellen.[2]

Eigenschaften

Bearbeiten

Grundlegende Eigenschaften

Bearbeiten
  • Für   gilt:  . Somit enthält die Kovarianzmatrix auf der Hauptdiagonalen die Varianzen der einzelnen Komponenten des Zufallsvektors. Alle Elemente auf der Hauptdiagonalen sind daher nichtnegativ.
  • Eine reelle Kovarianzmatrix ist symmetrisch, da die Kovarianz zweier Zufallsvariablen symmetrisch ist.
  • Die Kovarianzmatrix ist positiv semidefinit: Aufgrund der Symmetrie ist jede Kovarianzmatrix mittels Hauptachsentransformation diagonalisierbar, wobei die Diagonalmatrix wieder eine Kovarianzmatrix ist. Da auf der Diagonale nur Varianzen stehen, ist die Diagonalmatrix folglich positiv semidefinit und somit auch die ursprüngliche Kovarianzmatrix.
  • Umgekehrt kann jede symmetrische positiv semidefinite  -Matrix als Kovarianzmatrix eines  -dimensionalen Zufallsvektors aufgefasst werden.
  • Aufgrund der Diagonalisierbarkeit, wobei die Eigenwerte (auf der Diagonale) wegen der positiven Semidefinitheit nicht-negativ sind, können Kovarianzmatrizen als Ellipsoide dargestellt werden.
  • Für alle Matrizen   gilt  .
  • Für alle Vektoren   gilt  .
  • Sind   und   unkorrelierte Zufallsvektoren, dann gilt  .
  • Sind die Elemente   von   unkorreliert, so gilt  , d. h. die Kovarianzmatrix ist eine Diagonalmatrix.
  • Man erhält mit der Diagonalmatrix   die Kovarianzmatrix durch die Beziehung  , wobei   die Korrelationsmatrix in der Grundgesamtheit darstellt
  • Sind die Zufallsvariablen standardisiert, so enthält die Kovarianzmatrix gerade die Korrelationskoeffizienten und man erhält die Korrelationsmatrix
  • Die Inverse der Kovarianzmatrix   heißt Präzisions­matrix oder Konzentrationsmatrix
  • Die Determinante der Kovarianzmatrix   wird verallgemeinerte Varianz genannt und ist ein Maß für die Gesamtstreuung eines multivariaten Datensatzes
  • Für die Spur der Kovarianzmatrix gilt  
  •  

Beziehung zum Erwartungswert des Zufallsvektors

Bearbeiten

Ist   der Erwartungswertvektor, so lässt sich mit dem Verschiebungssatz von Steiner angewandt auf mehrdimensionale Zufallsvariablen zeigen, dass

 .

Hierbei sind Erwartungswerte von Vektoren und Matrizen komponentenweise zu verstehen.

Ein Zufallsvektor, der einer gegebenen Kovarianzmatrix gehorchen und den Erwartungswert   haben soll, kann wie folgt simuliert werden:
zunächst ist die Kovarianzmatrix zu zerlegen (z. B. mit der Cholesky-Zerlegung):

 .

Anschließend lässt sich der Zufallsvektor berechnen zu

 

mit einem (anderen) Zufallsvektor   mit voneinander unabhängigen standardnormalverteilten Komponenten.

Kovarianzmatrix zweier Vektoren

Bearbeiten

Die Kovarianzmatrix zweier Vektoren lautet

 

mit dem Erwartungswert   des Zufallsvektors   und dem Erwartungswert   des Zufallsvektors  .

Kovarianzmatrix als Effizienzkriterium

Bearbeiten

Die Effizienz bzw. Präzision eines Punktschätzers lässt sich mittels der Varianz-Kovarianzmatrix messen, da diese die Informationen über die Streuung des Zufallsvektors zwischen seinen Komponenten enthält. Im Allgemeinen gilt, dass sich die Effizienz eines Parameterschätzers anhand der „Größe“ seiner Varianz-Kovarianzmatrix messen lässt. Es gilt je „kleiner“ die Varianz-Kovarianzmatrix, desto größer die Effizienz des Schätzers. Seien   und   zwei unverzerrte   Zufallsvektoren. Wenn   ein   Zufallsvektor ist, dann ist   eine   positiv definite und symmetrische Matrix. Man kann sagen, dass   „kleiner“ ist als   in Sinne der Loewner-Halbordnung, d. h., dass   eine positiv semidefinite Matrix ist.[3]

Kovarianzmatrix in Matrix-Notation

Bearbeiten

Die Kovarianzmatrix lässt sich in der Matrix-Notation darstellen als

 ,

wobei   die Einsmatrix und   die Anzahl Dimensionen bezeichnet.[4]

Stichproben-Kovarianzmatrix

Bearbeiten

Eine Schätzung der Korrelationsmatrix in der Grundgesamtheit   erhält man, indem man die Varianzen und Kovarianzen in der Grundgesamtheit   und   durch die empirischen Varianzen und empirischen Kovarianzen (ihre empirischen Gegenstücke)   und   ersetzt (sofern die  -Variablen Zufallsvariablen darstellen schätzen die die Parameter in der Grundgesamtheit).

Spezielle Kovarianzmatrizen

Bearbeiten

Kovarianzmatrix des gewöhnlichen Kleinste-Quadrate-Schätzers

Bearbeiten

Für die Kovarianzmatrix des gewöhnlichen Kleinste-Quadrate-Schätzers

 

ergibt sich nach den obigen Rechenregeln:

 .

Diese Kovarianzmatrix ist unbekannt, da die Varianz der Störgrößen   unbekannt ist. Einen Schätzer für die Kovarianzmatrix   erhält man, indem man die unbekannte Störgrößenvarianz   durch den erwartungstreuen Schätzer der Störgrößenvarianz   ersetzt (siehe hierzu: Erwartungstreue Schätzung des unbekannten Varianzparameters).

Kovarianzmatrix bei scheinbar unverbundenen Regressionsgleichungen

Bearbeiten

Bei scheinbar unverbundenen Regressionsgleichungen (englisch: seemingly unrelated regression equations, kurz SURE) des Modells

 ,

wobei der Fehlerterm   idiosynkratisch ist, ergibt sich die Kovarianzmatrix als

 

Darstellung

Bearbeiten

Die Kovarianzmatrix kann als Näherung an die Streuregion und die Standardabweichungsellipse dargestellt werden.

Siehe auch

Bearbeiten

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. a b George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, Tsoung-Chao Lee: Introduction to the Theory and Practice of Econometrics. 2. Auflage. John Wiley & Sons, New York NY u. a. 1988, ISBN 0-471-62414-4, S. 43.
  2. Jeffrey M. Wooldridge: Introductory econometrics. A modern approach. 5th edition, international edition. South-Western Cengage Learning, Mason OH u. a. 2013, ISBN 978-1-111-53439-4, S. 857.
  3. George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, Tsoung-Chao Lee: Introduction to the Theory and Practice of Econometrics. 2. Auflage. John Wiley & Sons, New York NY u. a. 1988, ISBN 0-471-62414-4, S. 78.
  4. Lukas On Arnold, Muhsen Owaida: Single-Pass Covariance Matrix Calculation on a Hybrid FPGA/CPU Platform. In: Caterina Doglioni, Doris Kim, Graeme A. Stewart, Lucia Silvestris, Paul Jackson, Waseem Kamleh (Hrsg.): 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019). Adelaide, Australia, November 4–8, 2019 (= The European Physical Journal. Web of Conferences. 245, ISSN 2100-014X). EDP Sciences, Les Ulis 2020, (online).