Die reduzierte Masse ist eine fiktive Masse, die unter bestimmten Voraussetzungen die Eigenschaften zweier Einzelmassen eines Systems repräsentiert. Verallgemeinert für ein System mit Einzelmassen ist sie das -fache des harmonischen Mittels dieser Massen.

Astronomie, Teilchenbewegung

Bearbeiten

Wenn sich zwei Körper mit Massen   und   bewegen, ohne dem Einfluss einer Gesamtkraft zu unterliegen, so lassen sich die Bewegungsgleichungen aufspalten in die freie Bewegung des Schwerpunktes und das Ein-Körper-Problem der Relativbewegung. Dabei verhält sich das leichtere Teilchen im relativen Abstand zum schwereren Teilchen wie ein Teilchen, das die durch

 

charakterisierte reduzierte Masse[1]

 

hat.

Je nach Masse   des schwereren Körpers ( ) gilt für die reduzierte Masse:

 

mit den Randwerten

  •   für   und
  •   für  .

In wichtigen Fällen (Planetenbewegung, Bewegung eines Elektrons im Coulombfeld des Atomkerns) unterscheiden sich die Massen des schwereren und des leichteren Körpers sehr stark ( ). Dann ist die reduzierte Masse fast die Masse des leichteren Teilchens:

 

So lässt sich zum Beispiel die Relativbewegung Mond-Erde auf ein Ein-Körper-Problem reduzieren: Der Mond bewegt sich wie ein Körper mit reduzierter Masse   im Gravitationsfeld der Erde.

In vielen Lehrbüchern wird die reduzierte Masse mit dem griechischen Buchstaben   abgekürzt.

Herleitung

Bearbeiten
  • Bei verschwindender Gesamtkraft lauten die Bewegungsgleichungen für die Orte   und   der beiden Körper:
 
 
  • Addiert man diese zwei Gleichungen, so erhält man für den Schwerpunkt
 
mit der Massensumme   die Bewegungsgleichung
 
eines freien Teilchens. Also bewegt sich der Schwerpunkt geradlinig gleichförmig:
 
  • Subtrahiert man die durch die jeweilige Masse dividierten Bewegungsgleichungen der Teilchen, so erhält man
 
 
als Bewegungsgleichung für den relativen Ortsvektor  . Dieser bewegt sich also wie ein Teilchen der reduzierten Masse   unter dem Einfluss der Kraft  .

Drehimpuls

Bearbeiten

Für ein System aus zwei Teilchen kann mithilfe der reduzierten Masse der Drehimpuls im Schwerpunktsystem angegeben werden als

 

Hier bezeichnen

  •   jeweils den Ortsvektor bzw. den Impuls des Teilchens   bezogen auf den Schwerpunkt.
  •   jeweils den relativen Abstand bzw. die relative Geschwindigkeit der beiden Teilchen.

Auf den Schwerpunkt bezogen ist der Drehimpuls eines Gesamtsystems von zwei Teilchen also genau so groß wie der Drehimpuls eines Teilchens mit dem Impuls   und dem Ortsvektor  .[2]

Technische Mechanik

Bearbeiten

Eine Punktmasse  , die im Abstand   um eine Achse rotiert, kann auf einen anderen Abstand   umgerechnet werden. Die reduzierte Masse im neuen Abstand   hat das gleiche Trägheitsmoment bezüglich der Drehachse wie die ursprüngliche Masse. Mit der Übersetzung

 

berechnet sich die reduzierte Masse zu:

 

Anwendung z. B. in der Schwingungslehre.

Einzelnachweise

Bearbeiten
  1. C. Czeslik, H. Seemann, R. Winter: Basiswissen Physikalische Chemie. 4. Auflage. Vieweg+Teubner, Wiesbaden 2010, ISBN 978-3-8348-0937-7 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. W.Demtröder: Experimentalphysik 1. 7. Auflage. Springer-Verlag, Berlin 2015, ISBN 978-3-662-46415-1.