Bernoulli-Zahl

Folge rationaler Zahlen
(Weitergeleitet von Bernoulli-Polynome)

Die Bernoulli-Zahlen oder Bernoullischen Zahlen, 1, ±12, 16, 0, −130, … sind eine Folge rationaler Zahlen, die in der Mathematik in verschiedenen Zusammenhängen auftreten: in den Entwicklungskoeffizienten trigonometrischer, hyperbolischer und anderer Funktionen, in der Euler-Maclaurin-Formel und in der Zahlentheorie in Zusammenhang mit der Riemannschen Zetafunktion. Die Benennung dieser Zahlen nach ihrem Entdecker Jakob I Bernoulli wurde von Abraham de Moivre eingeführt.

Definition

Bearbeiten

In der mathematischen Fachliteratur werden die Bernoulli-Zahlen als drei unterschiedliche Folgen definiert, die aber sehr eng zusammenhängen. Da ist einmal die ältere Notation (bis ins 20. Jahrhundert im Wesentlichen genutzt), die hier mit   bezeichnet wird, und die beiden neueren Formen, die in diesem Artikel mit   und   bezeichnet und seit circa Mitte des 20. Jahrhunderts meistens benutzt werden. Eine genauere Verbreitung oder der historische Übergang der Konventionen lässt sich schwer objektivieren, da dies stark vom jeweiligen Mathematiker und dem Verbreitungsgebiet seiner Schriften abhing bzw. abhängt. Eine heutzutage gängige implizite Definition der Bernoulli-Zahlen ist, sie über die Koeffizienten folgender Taylorreihen entweder als

 

oder (durch Spiegelung an der y-Achse) als

 

bzw. früher als

 

einzuführen. Hierbei sind die Zahlen   und   die Koeffizienten der Reihenentwicklung bzw. die Glieder der Bernoulli-Zahlenfolge. Die Reihenentwicklungen konvergieren für alle x mit   Ersetzt man   durch  , so erkennt man die Gültigkeit von  , d. h., die beiden erstgenannten Definitionen unterscheiden sich lediglich für den Index 1, alle anderen   bzw.   mit ungeradem Index sind null. Zur sicheren Unterscheidung können die Glieder   als die der ersten Art (mit  ) und die   als die der zweiten Art (mit  ) bezeichnet werden.

Auf der zuletzt aufgeführten Reihe fußt die ältere Definition; bei dieser kommen nur Glieder mit Indizes   vor, d. h. die Glieder mit Index 0 und 1 müssen separat betrachtet werden. Für die verbleibenden Koeffizienten mit geradem Index   (genau diese sind nicht null) wählt man eine eigene Definition, so dass diese alle positiv sind. Daher gilt  

Genau dies hatte auch Jakob I Bernoulli bei seiner Erstbestimmung gemacht und so die ältere Notation begründet, er hatte sie allerdings noch nicht durchnummeriert. Er entdeckte diese Zahlen durch die Betrachtung der Polynome, welche die Summe der Potenzen natürlicher Zahlen von 1 bis zu einem gegebenen   mit kleinen ganzzahligen Exponenten beschreiben. Z. B.

 

Dies führt letztlich über die Faulhaberschen Formeln auf die Euler-Maclaurin-Formel, in der die Bernoulli-Zahlen eine zentrale Rolle spielen. Bewiesen hat er ihre allgemeinen Werte nicht, nur die der kleineren Koeffizienten korrekt errechnet – seine entsprechenden Aufzeichnungen wurden postum veröffentlicht.

Zahlenwerte

Bearbeiten

Die ersten Bernoulli-Zahlen  ,   ≠ 0 lauten

Index Zähler Nenner auf 6 Nach- kommastellen multipliziert mit     
0 1 1 1,000000 0
1 ± 1 2 ± 0,500000 ± 1 1
2 1 6 0,166666 1 1
4 −1 30 −0,033333 −1 2
6 1 42 0,023809 3 16
8 −1 30 −0,033333 −17 272
10 5 66 0,075757 155 7936
12 −691 2730 −0,253113 −2073 353792
14 7 6 1,166666 38227 22368256
16 −3617 510 −7,092156 −929569 1903757312
18 43867 798 54,971177 28820619 209865342976
20 −174611 330 −529,124242 −1109652905 29088885112832
22 854513 138 6192,123188 51943281731 4951498053124096
24 −236364091 2730 −86580,253113 −2905151042481 1015423886506852352
 
 
 

Die Zahlen   bilden eine streng konvexe (ihre Differenzen wachsen) Folge. Die Nenner der   sind stets ein Vielfaches von 6, denn es gilt
der Satz von Clausen und von-Staudt, auch Staudt-Clausen’scher Satz[1] genannt:

 

Er ist benannt nach der unabhängigen Entdeckung von Thomas Clausen und Karl von Staudt 1840. Der Nenner der   ist also das Produkt aller Primzahlen, für die gilt, dass   den Index   teilt. Unter Nutzung des kleinen Fermatschen Satzes folgt somit, dass der Faktor   diese rationalen Zahlen in ganze Zahlen überführt.

Auch wenn die Folge der   zunächst betragsmäßig relativ kleine Zahlenwerte annimmt, geht   mit wachsendem   doch schneller gegen Unendlich als jede Exponentialfunktion. So ist z. B.

  und  

Ihr asymptotisches Verhalten lässt sich mit

 

beschreiben, daher ist auch der Konvergenzradius der Taylorreihen, die oben zu ihrer Definition herangezogen wurden, gleich  

Rekursionsformeln

Bearbeiten

Möchte man die Bernoulli-Zahlen der ersten Art beschreiben, also  , so ergeben sich diese Bernoulli-Zahlen   aus der Rekursionsformel mit  

 

und dem Startwert  . Für ungerade Indizes   folgt daraus wieder  . Diese Formel entstammt der impliziten Definition der Bernoulli-Zahlen erster Art, die bis Mitte des 20. Jahrhunderts auch die gebräuchlichste Definition war, da sie eine leicht zu merkende Gestalt hat:

 

die auch in der weniger verbreiteten Form geschrieben werden kann als

 

wobei in diesen Darstellungen Potenzen von   als die entsprechend indizierten Bernoulli-Zahlen zu interpretieren sind. Für die Bernoulli-Zahlen der zweiten Art lässt sich analog sowohl

 

als auch

 

oder eleganter

 

schreiben und als induktive Definition der Bernoulli-Zahlen zweiter Art verwenden mit   zu

 

mit dem Startwert   oder für alle   als

 .

Implementation

Bearbeiten

Ein möglicher Algorithmus zur Berechnung der Bernoullizahlen in der Programmiersprache Julia nach den oben angegebenen Rekursionsformeln für vorgegebenen Wert   ist:

    b=Array{Float64}(undef, n+1)
    b[1]=1
    b[2]=-0.5
    for m=2:n
        for k=0:m
            for v=0:k
            b[m+1]+=(-1)^v *binomial(k,v)*v^(m)/(k+1)
            end
        end
    end
    return b

Reihen mit Bernoulli-Zahlen

Bearbeiten

Diese Zahlen treten beispielsweise in der Taylorreihe des Tangens, des Tangens hyperbolicus oder des Cosecans auf; im Allgemeinen, wenn eine Funktion eine geschlossene Darstellung hat, wo die Sinusfunktion (oder Sinus-hyperbolicus-Funktion) im Nenner steht – d. h. durch die Summe oder Differenz zweier e-Funktionen dividiert wird:

 
 
 
 

Hier zwei nicht konvergierende asymptotische Reihen, die der Trigamma-Funktion (der zweiten Ableitung des natürlichen Logarithmus der Gammafunktion)

 

und die des natürlichen Logarithmus der Gammafunktion

 

die als Logarithmus der Stirlingformel bekannt ist. Diese lässt sich einfach aus der asymptotischen Form der Euler-Maclaurin-Formel ableiten, die in ihrer symmetrischen Schreibweise

 

lautet – wobei hier der Ausdruck   die  -te Ableitung (speziell für   das Integral) der Funktion   ausgewertet an der Stelle   bedeutet –, wenn man dort   setzt, die untere Summationsgrenze   zu   wählt und die obere Summationsgrenze   mit   variabel hält. Dies ist eine der bekanntesten Anwendungen der Bernoulli-Zahlen und gilt für alle analytischen Funktionen  , auch wenn diese asymptotische Entwicklung in den meisten Fällen nicht konvergiert.

Zusammenhang mit der Riemannschen Zeta-Funktion

Bearbeiten

Die folgenden Reihenentwicklungen liefern die (im oben genannten Sinne) „klassischen“ Bernoulli-Zahlen:

 

Für die „modernen“ Bernoulli-Zahlen gilt

 

wobei im Fall der neueren Definition für n=1 undefinierte Ausdrücke der Form   entstehen, die aber gemäß der Regel von de L’Hospital wegen   den Pol erster Ordnung der Riemannschen Zetafunktion bei 1 (bzw. in der letzten Darstellung den Term   im Nenner) aufheben und somit korrekt den Wert   liefern.

Für die Bernoulli-Zahlen zweiter Art gibt es noch die prägnante Darstellung

 

so dass die gesamte Theorie der Riemannschen Zetafunktion zur Charakterisierung der Bernoulli-Zahlen bereitsteht.

Beispielsweise geht aus der Produktdarstellung der Riemannschen Zeta-Funktion und obigen Reihenentwicklungen der Bernoulli-Zahlen die folgende Darstellung hervor:

  .

Hierbei erstreckt sich das Produkt über alle Primzahlen (siehe auch Eulerprodukt der Riemannschen Zetafunktion).

Integraldarstellungen

Bearbeiten

Es gibt viele uneigentliche Integrale mit Summen oder Differenzen von zwei Exponentialfunktionen im Nenner des Integranden, deren Werte durch Bernoulli-Zahlen gegeben sind. Einige einfache Beispiele sind

 
 
 

aber auch

 

aus.[2]

Bernoulli-Polynome

Bearbeiten
 
Die Graphen der Bernoulli-Polynome des Grades 1 bis 6

Für jedes   ist das Bernoulli-Polynom eine Abbildung   und durch folgende Rekursionsgleichungen vollständig charakterisiert: Für   setzen wir

 

und für   ergibt sich das  -te Bernoulli-Polynom   eindeutig durch die beiden Bedingungen

 

und

 

rekursiv aus dem vorherigen. Als Summe der Potenzen von   geschrieben lautet der Ausdruck für das  -te Polynom

 

wobei hier wieder die   die Bernoulli-Zahlen erster Art bezeichnen. Diese Form folgt direkt aus der symbolischen Formel

 

worin man die Potenzen von   als die entsprechende n-te Bernoulli-Zahl   interpretiert. Die ersten Bernoulli-Polynome lauten

 
 
 
 
 
 
 

Diese Polynome sind symmetrisch um  , genauer

 

Ihre konstanten Terme sind die Bernoulli-Zahlen erster Art, also

 

die Bernoulli-Zahlen zweiter Art erhält man aus

 

und schließlich gilt

 

in der Intervallmitte. Das k-te Bernoulli-Polynom hat für k > 5 weniger als k Nullstellen in ganz   und für gerades n ≠ 0 zwei und für ungerades n ≠ 1 die drei Nullstellen   im Intervall  . Sei   die Nullstellenmenge dieser Polynome. Dann ist

 

für alle n ≠ 5 und n ≠ 2 und es gilt

 

wobei die Funktion   angewandt auf eine Menge deren Elementanzahl angibt.

Die Funktionswerte der Bernoulli-Polynome im Intervall [0,1] sind für geraden Index durch

 

und für ungeraden Index   (aber nicht scharf) durch

 

beschränkt.

Ferner genügen sie der Gleichung

 ,

falls man sie auf ganz   analytisch fortsetzt, und die Summe der Potenz der ersten   natürlichen Zahlen lässt sich mit ihnen als

 

beschreiben. Die Indexverschiebung von   zu   auf der rechten Seite der Gleichung ist hier notwendig, da man historisch die Bernoulli-Poynome an den Bernoulli-Zahlen erster Art (und nicht zweiter Art) „fälschlicherweise“ festmachte[3] und somit statt   den Summanden   in obigen Bernoulli-Poynomen erhält, was hier genau den Wert   zu wenig ergibt (den letzten Term der Summe auf der linken Seite), und daher auf der rechten Seite dieser Index noch „eins weiter“ laufen muss.

Bernoulli-Zahlen in der algebraischen Zahlentheorie

Bearbeiten

Satz von Staudt:

 

Als Satz von Staudt-Clausen ist auch die Aussage

 

bekannt, die etwas stärker ist als der vorherige Satz von Clausen und von-Staudt zur Charakterisierung der Nenner. Die Folge der so bestimmten ganzen Zahlen für geradzahligen Index lautet  .

Kummersche Kongruenz:

 

Eine ungerade Zahl   heißt reguläre Primzahl, wenn sie keinen der Zähler der Bernoulli-Zahlen   mit   teilt. Kummer zeigte, dass diese Bedingung äquivalent dazu ist, dass   nicht die Klassenzahl   des p-ten Kreisteilungskörpers   teilt. Er konnte so 1850 beweisen, dass der große Fermatsche Satz, nämlich   hat für   keine Lösungen in  , für alle Exponenten   gilt, die eine reguläre Primzahl sind. Damit war beispielsweise durch das Überprüfen der Bernoulli-Zahlen bis Index 94 der große Fermatsche Satz mit Ausnahme der Exponenten 37, 59, 67 und 74 für alle anderen Exponenten ≤ 100 bewiesen.

Tangentenzahlen und Anwendungen in der Kombinatorik

Bearbeiten

Betrachtet man die Eulerschen Zahlen und die Taylorentwicklung der Tangens-Funktion, so kann man die Tangenten-Zahlen[4] implizit definieren zu

 

und für Index Null noch   setzen. Man hat somit die Transformation

 

die aus den Bernoulli-Zahlen erster Art diese Folge ganzer Zahlen erzeugt:

 

Da die Vorzeichenwahl in der impliziten Definition völlig willkürlich ist, kann man genauso berechtigt mittels

 

die Tangentenzahlen definieren, mit der Konsequenz

 

und hat für alle Indizes  

In jedem Fall sind mit Ausnahme von   alle Zahlen mit geradem Index Null und die mit ungeradem Index haben alternierendes Vorzeichen.

Die Werte   sind nun genau die Anzahl alternierender Permutationen einer   elementigen Menge. Weitere Informationen zur direkten Bestimmung der Tangentenzahlen findet man im Artikel Eulersche Zahlen.

In der Kombinatorik lassen sich die Bernoulli-Zahlen zweiter Art auch durch die Stirling-Zahlen zweiter Art   darstellen als

 

Die Werte   werden auch als Worpitzky-Zahlen bezeichnet.[5] Ein weiterer Zusammenhang ergibt sich über die erzeugende Potenzreihe der Stirling-Polynome   mit   wegen

 

mit den Stirling-Zahlen erster Art   zu

 

die man so für negatives   definieren könnte. Daher sind die Bernoulli-Zahlen zweiter Art auch die Werte der Stirling-Polynome bei Null

 

aufgrund der gleichen formalen Potenzreihe.

Algebraische Topologie

Bearbeiten

Hier im Artikel sind die Bernoulli-Zahlen zu Anfang willkürlich mittels erzeugender Potenzreihen definiert worden. Die formale Potenzreihe von   tritt aber auch direkt bei der Bestimmung der Todd-Klasse eines Vektorbündels   auf einem topologischen Raum   auf:

 

wobei die   die Kohomologieklassen von   sind. Wenn   endlich-dimensional ist, dann ist   ein Polynom. Die Bernoulli-Zahlen zweiter Art „zählen“ hier also ganz natürlich gewisse topologische Objekte. Diese formale Potenzreihe schlägt sich genauso im L-Geschlecht bzw. Todd-Geschlecht der charakteristischen Potenzreihe einer orientierbaren Mannigfaltigkeit nieder.[6]

Siehe auch

Bearbeiten

Literatur

Bearbeiten
  1. J. C. Kluyver: Der Staudt-Clausen’sche Satz. Math. Ann. Bd. 53, (1900), S. 591–592.
  2. W. Gröbner und N. Hofreiter: Integraltafel. Zweiter Teil: Bestimmte Integrale. 5. verb. Auflage, Springer-Verlag, 1973.
  3. John H. Conway, Richard K. Guy: The Book of Numbers. Springer-Verlag, 1996, ISBN 0-387-97993-X, Kap. 4, S. 107–109.
  4. J. M. Borwein, P. B. Borwein, K. Dilcher: Pi, Euler Numbers, and Asymptotic Expansions. AMM, Bd. 96, Nr 8, (Okt. 1989), S. 682.
  5. Henry Wadsworth Gould: Combinatorial identities. Morgantown, W Va, 1972.
  6. K. Reillag, J. Gallier: Complex Algebraic Geometry. CIS 610, Lecture Notes, Fall 2003 – Spring 2004, Chap 3, S. 209–220.
Bearbeiten