Der Levene-Test[1][2] bezeichnet in der Statistik einen Signifikanztest, der auf Gleichheit der Varianzen (Homoskedastizität) von zwei oder mehr Grundgesamtheiten (Gruppen) prüft. Der Brown–Forsythe Test ist aus dem Levene-Test abgeleitet. Er stammt von Howard Levene.
Ähnlich dem Bartlett-Test prüft der Levene-Test die Nullhypothese darauf, dass alle Gruppenvarianzen gleich sind. Die Alternativhypothese lautet demnach, dass mindestens ein Gruppenpaar ungleiche Varianzen besitzt (Heteroskedastizität):
Nullhypothese: | |
Alternativhypothese: | für mindestens ein Gruppenpaar mit |
Befindet sich der p-Wert des Tests unter einem zuvor bestimmten Niveau, so sind die Unterschiede in den Varianzen der Stichproben überzufällig (signifikant) und die Nullhypothese der Varianzgleichheit kann abgelehnt werden.[3]
Beispiel
BearbeitenDie Grafik oben zeigt die Verteilung des Nettoeinkommens nach Geschlecht und Geburtsmonat. Die Ausgabe von car::leveneTest
in R:
- Der Levene-Test nach Geschlecht ergibt einen p-Wert kleiner als und ist damit hochsignifikant:
Levene’s Test for Homogeneity of Variance Df F value Pr(>F) group 1 106.09 < 2.2e-16 *** 2404 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Bei einem solchen p-Wert kann davon ausgegangen werden, dass die Varianzen in der Population unterschiedlich sind. Die Nullhypothese gleicher Varianzen wird entsprechend verworfen.
- Der Levene-Test nach Geburtsmonat ergibt einen p-Wert von und ist bei einem vorgegebenen Signifikanzniveau von 5 % nicht signifikant:
Levene’s Test for Homogeneity of Variance Df F value Pr(>F) group 11 1.6621 0.076. 2384 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Teststatistik
BearbeitenSind ( und ) die Stichprobenvariablen und
mit Anzahl der Gruppen (Stichproben), die Anzahl der Beobachtungen in Gruppe und der Stichprobenmittelwert der Gruppe . Dann ist die Teststatistik
annähernd -verteilt mit die Anzahl aller Beobachtungen:
- ,
der Stichprobenmittelwert über alle Gruppen und der Stichprobenmittelwert über Gruppe .
Die Teststatistik bzgl. ist identisch mit der Teststatistik der einfachen Varianzanalyse (Test auf Gleichheit von Gruppenmittelwerten). Durch die Transformation von auf sind die Gruppenmittelwerte
robuste Schätzfunktionen der Gruppenvarianzen. Die Normalverteilungsannahme für die Varianzanalyse gilt zwar nicht, jedoch haben die oft eine rechtsschiefe Verteilung für die die Varianzanalyse angewandt werden kann.[4]
Brown–Forsythe-Test
BearbeitenIm Brown–Forsythe-Test wird bei Berechnung von statt des Gruppenmittelwertes der Gruppenmedian benutzt.[5] Um eine gute Teststärke zu erhalten, muss der Lageparameter in Abhängigkeit von der zugrunde liegenden Verteilung gewählt werden. Brown und Forsythe zeigten in Simulationsstudien, dass der Mittelwert eine gute Wahl ist, wenn die Verteilung symmetrisch und „normale“ Verteilungsenden (Exzess 0) hat, z. B. einer Normalverteilung ähnlich ist. Der Median sollte benutzt werden, wenn die Verteilungen stark schief sind, und der getrimmte Mittelwert, wenn die Verteilung schwere Verteilungsenden hat (Exzess<0).
Einzelnachweise
Bearbeiten- ↑ Howard Levene: Robust tests for equality of variances. In: Ingram Olkin, Harold Hotelling et al. (Hrsg.): Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press, 1960, ISBN 0-8047-0596-8, S. 278–292}.
- ↑ Joseph L. Gastwirth, Yulia R. Gel, Weiwen Miao: The impact of Levene´s test of equality of variances on statistical theory and practice. In: Statistical Science. Band 24, Nr. 3, S. 343–360, doi:10.1214/09-STS301.
- ↑ Jürgen Janssen, Wilfried Laatz: Statistische Datenanalyse mit SPSS für Windows. 8. Auflage. Springer Verlag, 2007, S. 246.
- ↑ Maxwell J. Roberts, Riccardo Russo: Student’s Guide to Analysis of Variance. Routledge Chapman & Hall, 1999, ISBN 978-0-415-16565-5, S. 71.
- ↑ Morton B. Brown, Alan B. Forsythe: Robust tests for equality of variances. In: Journal of the American Statistical Association. Band 69, 1974, S. 364–367, doi:10.1080/01621459.1974.10482955.
Literatur
Bearbeiten- Biostatistik: Eine Einführung für Biowissenschaftler. (2008). München: Pearson Studium. S. 150–154.