Eines der vielen Resultate von Leonhard Euler in der elementaren Vierecksgeometrie steht im Zusammenhang mit dem Problem, wann in der euklidischen Ebene zu zwei gegebenen ineinanderliegenden Kreisen ein konvexes Viereck existiert, welches sowohl Sehnenviereck des größeren Kreises als auch Tangentenviereck des kleineren Kreises ist. Euler hat dazu eine Gleichung gefunden, welche eng verwandt ist mit der in seinem Satz über den Abstand von Um- und Inkreismittelpunkt eines ebenen Dreiecks. Die erste veröffentlichte Darstellung und Herleitung der Gleichung hat Eulers Sekretär Nikolaus Fuß im Jahre 1798 geliefert.[1][2][3]

Darstellung der Gleichung

Bearbeiten
 
Gleichung von Euler-Fuß liefert konvexes Viereck

Zu der Euler-Fuß'schen Gleichung gilt der folgende Lehrsatz, welcher den zugehörigen Satz von Fuss und dessen Umkehrung in sich vereinigt:[4]

Gegeben seien zwei positive Zahlen   und   sowie zwei Kreise   und   der euklidischen Ebene  , wobei   den Radius   und   den Radius   habe.
Dabei liege die Kreisscheibe   von   innerhalb der Kreisscheibe   von   und es sei   .
Der Abstand der beiden Kreismittelpunkte sei  .
Dann gilt:
Dann und nur dann existiert in der euklidischen Ebene ein konvexes Viereck mit   als Inkreis und   als Umkreis, wenn die Gleichung
 
erfüllt ist.

Anmerkungen

Bearbeiten
  • In Heinrich Dörries Mathematischen Miniaturen wird die Euler-Fuß'sche Gleichung auch unter dem Stichwort Fuß' Vierecksformel genannt. Dörrie gibt dort – unter Verwendung anderer Parameter – die folgende gleichwertige Gleichung an:[3][5]
 
  • Ein konvexes Viereck, welches sowohl einen Umkreis als auch einen Inkreis besitzt, nennt man Heinrich Dörrie zufolge auch ein bizentrisches Viereck.[5]
  • Heinrich Dörrie verweist in seinem Triumph der Mathematik darauf, dass Nikolaus Fuß ebenso die entsprechenden Formeln für das bizentrische Fünfeck, Sechseck, Siebeneck und Achteck gefunden hat.[6]

Quellen und Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Julian Lowell Coolidge: A Treatise on the Circle and the Sphere. 1916 (Nachdruck 1971, 2004), S. 44 ff
  2. Max Simon: Über die Entwicklung der Elementar-Geometrie im XIX. Jahrhundert. 1906, S. 108
  3. a b Heinrich Dörrie: Mathematische Miniaturen. 1979, S. 71–72, 115
  4. Julian Lowell Coolidge: op. cit. S. 46 ff, 117–118
  5. a b Dörrie, op. cit., S. 522
  6. Heinrich Dörrie: Triumph der Mathematik. 1958, S. 196