Das Hilfskugelverfahren ist eine Methode der darstellenden Geometrie, um die Durchdringungskurve (Schnittkurve) zweier Rotationsflächen (Zylinder, Kegel, Kugel, …), deren Rotationsachsen sich schneiden, in einer Zweitafelprojektion punktweise zu bestimmen. Wesentliche Voraussetzung ist, dass die Rotationsachsen der sich schneidenden Rotationsflächen zu einer der Riss-Ebenen (Grund- oder Aufriss) parallel sind. Denn dann erscheinen die Schnittkreise einer Hilfskugel, deren Mittelpunkt der Achsenschnittpunkt ist, mit den Rotationsflächen in einem Riss als Strecken.

Falls sich die Achsen nicht schneiden, aber dafür horizontal oder senkrecht sind, sollte man überlegen, ob das Hilfsebenenverfahren anwendbar ist. Eine spezielle Alternative für den Schnitt zweier Kegel bzw. eines Kegels mit einem Zylinder bietet das Pendelebenenverfahren.

Rechnerische Verfahren zur Bestimmung von Punkten auf einer Schnittkurve werden im Artikel Schnittkurve erläutert.

Beschreibung des Verfahrens an einem Beispiel

Bearbeiten
 
Hilfskugelverfahren: Schnittkurve Kegel-Kugel
 
Hilfskugelverfahren: Schnittkurve Kegel-Kugel, Lösung

Gegeben sind ein Kegel   (Achse  ) und ein Zylinder   (Achse  ) in Grund- und Aufriss (s. Bild). Gesucht ist die Durchdringungskurve   der beiden Flächen. Wir wählen als Hilfsflächen Kugeln mit dem Schnittpunkt   der Achsen als Mittelpunkt. Solche Kugeln mit geeigneten Radien schneiden sowohl den Kegel als auch den Zylinder in Kreisen als Hilfskurven. Diese Kreise sind alle senkrecht zur Aufrisstafel, d. h., sie erscheinen als Strecken im Aufriss.

  1. Wähle eine Kugel   mit Mittelpunkt  , die beide Flächen schneidet.
  2. Bestimme im Aufriss die Schnittkreise   der Kugel mit dem Kegel   und   der Kugel mit dem Zylinder  . Wir verwenden hier nur  .   sind Strecken, da alle Kreise zur Aufrisstafel senkrecht sind.
  3.   und   liefern den Aufriss von max. vier Punkten   der Durchdringungskurve. Es ist  .
  4. Zeichne   und übertrage   über Ordner in den Grundriss.   liegen auf  .
  5. Wiederhole 1. bis 4. n-mal.
  6. Verbinde die Punkte in der „richtigen“ Reihenfolge mit einer Kurve.

Literatur

Bearbeiten
Bearbeiten