Der Transformationssatz (auch Transformationsformel) beschreibt in der Analysis das Verhalten von Integralen unter Koordinatentransformationen. Er ist somit die Verallgemeinerung der Integration durch Substitution auf Funktionen höherer Dimensionen. Der Transformationssatz wird als Hilfsmittel bei der Berechnung von Integralen verwendet, wenn sich das Integral nach Überführung in ein anderes Koordinatensystem leichter berechnen lässt.
Formulierung des Satzes
BearbeitenEs sei eine offene Menge und ein Diffeomorphismus. Dann ist die Funktion auf genau dann integrierbar, wenn die Funktion auf integrierbar ist. In diesem Fall gilt:
Dabei ist die Jacobi-Matrix und die Funktionaldeterminante von .
Spezialfälle
Bearbeiten- Wählt man für die konstante Funktion 1, so stellt die linke Seite der Formel einfach das Volumen bzw. -dimensionale Lebesgue-Maß der Bildmenge dar:
- Ist außerdem die Abbildung linear oder affin, , wobei eine -Matrix ist und , so ist . Somit gilt
Beispiel
BearbeitenUm zu zeigen, dass das Integral über die Gauß-Glocke
gleich 1 ist, genügt es, die Aussage
zu beweisen. Da die Funktion rotationssymmetrisch ist, liegt die Berechnung des Integrals in Polarkoordinaten statt kartesischen Koordinaten nahe:
Es sei und
Dann ist die Funktionaldeterminante
Das Komplement von ist eine Nullmenge, mit ergibt sich also
Die Auswertung des inneren Integrals in der vorletzten Zeile kann beispielsweise durch eine Substitution begründet werden.
Literatur
Bearbeiten- Otto Forster: Analysis. Band 3: Maß- und Integrationstheorie, Integralsätze im Rn und Anwendungen, 8. verbesserte Auflage. Springer Spektrum, Wiesbaden, 2017, ISBN 978-3-658-16745-5.
- Konrad Königsberger: Analysis 2, Springer, Berlin 2004, S. 211